oc中不同方式实现锁

今天一起来探讨一下Objective-C中几种不同方式实现的锁,在这之前我们先构建一个测试用的类,假想它是我们的一个共享资源,method1与method2是互斥的,代码如下:

12345678910111213
@implementation TestObj

- (void)method1{    NSLog(@"%@",NSStringFromSelector(_cmd));}

- (void)method2{    NSLog(@"%@",NSStringFromSelector(_cmd));    }

@end

1.使用NSLock实现的锁

12345678910111213141516171819
//主线程中TestObj *obj = [[TestObj alloc] init];NSLock *lock = [[NSLock alloc] init];

//线程1dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{    [lock lock];    [obj method1];    sleep(10);    [lock unlock];});

//线程2dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{    sleep(1);//以保证让线程2的代码后执行    [lock lock];    [obj method2];    [lock unlock];});

看到打印的结果了吗,你会看到线程1锁住之后,线程2会一直等待走到线程1将锁置为unlock后,才会执行method2方法。

NSLock是Cocoa提供给我们最基本的锁对象,这也是我们经常所使用的,除lock和unlock方法外,NSLock还提供了tryLock和lockBeforeDate:两个方法,前一个方法会尝试加锁,如果锁不可用(已经被锁住),刚并不会阻塞线程,并返回NO。lockBeforeDate:方法会在所指定Date之前尝试加锁,如果在指定时间之前都不能加锁,则返回NO。

2.使用synchronized关键字构建的锁

当然在Objective-C中你还可以用@synchronized指令快速的实现锁:

123456789101112131415161718
//主线程中TestObj *obj = [[TestObj alloc] init];

//线程1dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{    @synchronized(obj){        [obj method1];        sleep(10);    }});

//线程2dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{    sleep(1);    @synchronized(obj){        [obj method2];    }});

@synchronized指令使用的obj为该锁的唯一标识,只有当标识相同时,才为满足互斥,如果线程2中的@synchronized(obj)改为@synchronized(other),刚线程2就不会被阻塞,@synchronized指令实现锁的优点就是我们不需要在代码中显式的创建锁对象,便可以实现锁的机制,但作为一种预防措施,@synchronized块会隐式的添加一个异常处理例程来保护代码,该处理例程会在异常抛出的时候自动的释放互斥锁。所以如果不想让隐式的异常处理例程带来额外的开销,你可以考虑使用锁对象。

3.使用C语言的pthread_mutex_t实现的锁

123456789101112131415161718192021
//主线程中TestObj *obj = [[TestObj alloc] init];

__block pthread_mutex_t mutex;pthread_mutex_init(&mutex, NULL);

//线程1dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{    pthread_mutex_lock(&mutex);    [obj method1];    sleep(5);    pthread_mutex_unlock(&mutex);});

//线程2dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{    sleep(1);    pthread_mutex_lock(&mutex);    [obj method2];    pthread_mutex_unlock(&mutex);});

pthread_mutex_t定义在pthread.h,所以记得#include 
4.使用GCD来实现的”锁”
以上代码构建多线程我们就已经用到了GCD的dispatch_async方法,其实在GCD中也已经提供了一种信号机制,使用它我们也可以来构建一把”锁”(从本质意义上讲,信号量与锁是有区别,具体差异参加信号量与互斥锁之间的区别):

12345678910111213141516171819
//主线程中TestObj *obj = [[TestObj alloc] init];dispatch_semaphore_t semaphore = dispatch_semaphore_create(1);

//线程1dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{    dispatch_semaphore_wait(semaphore, DISPATCH_TIME_FOREVER);    [obj method1];    sleep(10);    dispatch_semaphore_signal(semaphore);});

//线程2dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{    sleep(1);    dispatch_semaphore_wait(semaphore, DISPATCH_TIME_FOREVER);    [obj method2];    dispatch_semaphore_signal(semaphore);});

至于代码产生的效果当然和上一例是一模一样的,关于信号机制,熟悉C编程的你肯定也不会陌生的,关于GCD中更多关于dispatch_semaphore_t的信息,可以跳转到本博客的这一往篇文章:GCD介绍(三): Dispatch Sources

好了,以上就是我所列举了几种方式来实现锁,当然锁大多数情况下也是配合多线程一起使用的,关于多线程编程,我这儿就不赘述了。

时间: 2024-10-17 02:42:47

oc中不同方式实现锁的相关文章

Objective-C中不同方式实现锁(二)-11-多线程

1 Objective-C中不同方式实现锁(二) 2 3 在上一文中,我们已经讨论过用Objective-C锁几种实现(跳转地址),也用代码实际的演示了如何通过构建一个互斥锁来实现多线程的资源共享及线程安全,今天我们继续讨论锁的一些高级用法. 4 5 1.NSRecursiveLock递归锁 6 7 平时我们在代码中使用锁的时候,最容易犯的一个错误就是造成死锁,而容易造成死锁的一种情形就是在递归或循环中,如下代码: 8 9 1 10 2 11 3 12 4 13 5 14 6 15 7 16 8

Objective-C中不同方式实现锁(一)-12-多线程

Objective-C中不同方式实现锁(一) 为什么需要使用锁,当然熟悉多线程的你,自然不会对它觉得陌生. 那你在代码中是否很好的使用了锁的机制呢?你又知道几种实现锁的方法呢? 今天一起来探讨一下Objective-C中几种不同方式实现的锁,在这之前我们先构建一个测试用的类,假想它是我们的一个共享资源,method1与method2是互斥的,代码如下: 1 2 3 4 5 6 7 8 9 10 11 12 13 @implementation TestObj - (void)method1 {

OC中实现锁

熟悉多线程开发的同学对锁肯定不陌生,但是OC中如何实现锁呢?给大家科普一下. 首先构建一个测试用的类,假想它是我们的一个共享资源,method1与method2是互斥的,代码如下: @implementation TestObj - (void)method1 { NSLog(@"%@",NSStringFromSelector(_cmd)); } - (void)method2 { NSLog(@"%@",NSStringFromSelector(_cmd));

oc不同方式实现锁2

在上一文中,我们已经讨论过用Objective-C锁几种实现(跳转地址),也用代码实际的演示了如何通过构建一个互斥锁来实现多线程的资源共享及线程安全,今天我们继续讨论锁的一些高级用法. 1.NSRecursiveLock递归锁 平时我们在代码中使用锁的时候,最容易犯的一个错误就是造成死锁,而容易造成死锁的一种情形就是在递归或循环中,如下代码: 123456789101112131415161718192021222324252627282930 //主线程中NSLock *theLock = [

OC中并发编程的相关API和面临的挑战

OC中并发编程的相关API和面临的挑战(1) 小引 http://www.objc.io/站点主要以杂志的形式,深入挖掘在OC中的最佳编程实践和高级技术,每个月探讨一个主题,每个主题都会有几篇相关的文章出炉,2013年7月份的主题是并发编程,今天挑选其中的第2篇文章(Concurrent Programming: APIs and Challenges)进行翻译,与大家分享一下主要内容.由于内容比较多,我将分两部分翻译(API和难点)完成,翻译中,如有错误,还请指正. 目录 1.介绍 2.OS

【学习ios之路:Objective-C】OC中常用的系统排序方法

①.OC中常用排序方法: 1).不可变数组 - (NSArray *)sortedArrayUsingSelector:(SEL)comparator; - (NSArray *)sortedArrayUsingComparator:(NSComparator)cmptr; 2)可变数组 - (void)sortUsingSelector:(SEL)comparator; - (void)sortUsingComparator:(NSComparator)cmptr; 3).字典排序 - (NS

关于void*类型的用法(相当于OC中的id类型)

关于void*类型的用法(相当于OC中的id类型) 1.C++语言在对于void* 类型的使用很特别,因为void* 可以间接引用任何其他数据类型的指针,比如int*.float*甚至抽象数据类型的指针,而且可以从void* 强制转换为任何其他数据类型的指针,所以使用起来有时候会比较危险.如果开始将一个void*的指针间接引用一个float*的指针,然后将这个void*指针强制转化为一个int*类型的指针,编译器不会给出错误甚至警告,但是输出的数据却匪夷所思,如果再强制转换会float*则不会出

智能指针 与 oc中的指针

智能指针 与 oc中的指针 智能指针的原理及实现 当类中有指针成员时,一般有两种方式来管理指针成员:一是采用值型的方式管理,每个类对象都保留一份指针指向的对象的拷贝:另一种更优雅的方式是使用智能指针,从而实现指针指向的对象的共享. 智能指针(smart pointer)的一种通用实现技术是使用引用计数(reference count).智能指针类将一个计数器与类指向的对象相关联,引用计数跟踪该类有多少个对象共享同一指针. 每次创建类的新对象时,初始化指针并将引用计数置为1:当对象作为另一对象的副

OC中类别、扩展、协议与委托

类别(category)--通过使用类别,我们可以动态地为现有的类添加新方法,而且可以将类定义模块化地分不到多个相关文件中.通常只在类别中定义方法. 类别,接口部分的定义,通常该文件命名为已有"类+类别名.h" @interface 已有类 (类别名) //.......方法实现 @end 例如,考虑为NSNumber增加一个类别,则接口部分代码如下 <p style="margin-top: 0px; margin-bottom: 0px; font-family: