过拟合问题是什么?

为了得到一致假设而使假设变得过度严格,称为过拟合。

避免过拟合,是分类器设计中的一个核心任务。

通常采用增大数据量和测试样本集的方法对分类器性能进行评价。

想象某种学习算法产生了一个过拟合分类器,这个分类器能够百分之百的正确分类样本数据,为了能够对样本完全正确的分类,使得它的构造如此精细复杂,规格如此严格,以至于任何与样本数据稍有不同的文档它全都认为不属于这个类别。

(a)中虽完全拟合了样本数据,但在(b)中使用该分类器对测试数据分类准确度很差。

(c)中虽没有完全拟合样本数据,但在(d)中使用该分类器对测试数据分类准确度却很高。

过拟合问题出现,往往是由于训练样本数据太少等原因造成的。

时间: 2024-10-09 13:50:51

过拟合问题是什么?的相关文章

机器学习:过拟合与正则化

过拟合的定义:过拟合是指模型过度拟合训练集, 学到训练集中过多的噪音或随机波动,导致模型泛化能力差的情况.它表现为在训练集上表现良好,在测试集上表现差. 解决方法:1.重新清洗数据,导致过拟合的一个原因也有可能是数据不纯导致的,如果出现了过拟合就需要我们重新清洗数据. 2.数据集扩增(data augmentation)  2.1从数据源头采集更多数据  2.2复制原有数据并加上随机噪声  2.3重采样 3.采用dropout方法.dropout方法在训练时删除一定比例的神经元, 让这些神经元不

关于过拟合、局部最小值、以及Poor Generalization的思考

Poor Generalization 这可能是实际中遇到的最多问题. 比如FC网络为什么效果比CNN差那么多啊,是不是陷入局部最小值啊?是不是过拟合啊?是不是欠拟合啊? 在操场跑步的时候,又从SVM角度思考了一下,我认为Poor Generalization属于过拟合范畴. 与我的论文 [深度神经网络在面部情感分析系统中的应用与改良] 的观点一致. SVM ImageNet 2012上出现了一个经典虐杀场景.见[知乎专栏] 里面有一段这么说道: 当时,大多数的研究小组还都在用传统compute

基于 移动最小二乘法(MLS) 的三维数据拟合

项目介绍: 1. 需要预测的数据: 2. 采用的权函数以及形函数: 3. 求解的形函数曲线结果: 4. 算法流程图: 5. 预测结果: x=[234 255 255 76 12];y=[162 242 176 54 55];z=[199 200 57 50 73]; 对应的预测结果为: >> MLS_Output Esti_ux = 53.3651 73.8599 54.2216 5.9668 9.0063 Esti_uy = 43.9818 77.5332 48.3499 5.2517 11

tensorflow:实战Google深度学习框架第四章02神经网络优化(学习率,避免过拟合,滑动平均模型)

1.学习率的设置既不能太小,又不能太大,解决方法:使用指数衰减法 例如: 假设我们要最小化函数 y=x2y=x2, 选择初始点 x0=5x0=5 1. 学习率为1的时候,x在5和-5之间震荡. import tensorflow as tf TRAINING_STEPS = 10 LEARNING_RATE = 1 x = tf.Variable(tf.constant(5, dtype=tf.float32), name="x") y = tf.square(x) train_op

插值与拟合

1.插值 -->求过已知有限个数据点的近似函数 1)拉格朗日多项式插值 -->n个插值点不同时确定了一个唯一的n次多项式 构造n次拉格朗日插值多项式(不使用解方程n个约束来求解待定系数) 2)牛顿插值 使用差商概念来构造牛顿插值公式(计算量小,余项与拉格朗日余项相等),当节点之差为常数时,使用差分来代替差商构造牛顿向前插值公式 3)分段线性插值 -->高次插值存在震荡缺陷,采用低次分段函数(线性函数) y=interp1(x0,y0,x,'method') -->method可取n

机器学习的防止过拟合方法

过拟合 ??我们都知道,在进行数据挖掘或者机器学习模型建立的时候,因为在统计学习中,假设数据满足独立同分布(i.i.d,independently and identically distributed),即当前已产生的数据可以对未来的数据进行推测与模拟,因此都是使用历史数据建立模型,即使用已经产生的数据去训练,然后使用该模型去拟合未来的数据.但是一般独立同分布的假设往往不成立,即数据的分布可能会发生变化(distribution drift),并且可能当前的数据量过少,不足以对整个数据集进行分

用python的numpy作线性拟合、多项式拟合、对数拟合

转自:http://blog.itpub.net/12199764/viewspace-1743145/ 项目中有涉及趋势预测的工作,整理一下这3种拟合方法:1.线性拟合-使用mathimport mathdef linefit(x , y):    N = float(len(x))    sx,sy,sxx,syy,sxy=0,0,0,0,0    for i in range(0,int(N)):        sx  += x[i]        sy  += y[i]        s

过拟合的处理

处理过拟合的方法: 1.去噪(数据清洗): 2.增加训练数据集(收集或构造新数据) 3.正则化(L1.L2) 4.减少特征数目 5.对于决策树可以采用剪枝法 6.采用组合分类器(装袋或随机森林) 7.选择合适的迭代停止条件 8.迭代过程中进行权值衰减(以某个小因子降低每个权值)

Stanford机器学习[第三课]-欠拟合与过拟合

1.本次课程大纲 局部加权回归: 线性回归的变化版本 Probability interpretation:另一种可能的对于线性回归的解释 Logistic回归: 基于2的一个分类算法 感知器算法: 对于3的延伸,简要讲 牛顿方法(用来对logistic进行拟合的算法,这节课没讲) 2.过拟合与欠拟合的距离 评估房子的价格,假设三种拟合算法: (1)X1=size, 拟合出一条线性曲线: (2)x1=size,x2=(size)2,拟合出一条二次曲线: (3)训练集共有7个数据,建立六个特征,拟

newLISP数据拟合

有时候需要拟合数据,比如某周五的数据因故无法生成, 可以用下面的算法简单拟合. 计算前两周的周四,周五的环比(邻比), 两个邻比求平均后加1, 乘以 周四的数据,得到周五的数据. 用newLISP实现代码很简单: 参考下面的示例: #!/usr/bin/newlisp (define (adjacent-div a b) (div (sub b a) a)) (define (average a b) (div (add a b) 2)) (define (fitting a b c d e)