算法学习步骤

画图写出策略,然后每个步骤都用最简单的代码写出来,总结规律

插入排序算法

package a;

public class ChaRuPaiXu {
public static void main(String[] args) {
int[] nums={24,3,51,12,6,4,5,34,23,1,2};
for(int i=1;i<nums.length;i++)
{
int temp=nums[i];
int j=0;
for(j=i-1;j>=0;j--)
{
if(nums[j]>temp){
nums[j+1]=nums[j];
}
else{
break;
}
}
nums[j+1]=temp;
}
for(int i=0;i<nums.length;i++)
System.out.print(nums[i]+" ");
}
}

时间: 2024-10-18 22:43:39

算法学习步骤的相关文章

周总结(2017.2.16):第一周算法学习。

周总结:算法学习总结之DFS和BFS 一:DFS算法 目的:达到被搜索结构的叶节点. 定义:假定给定图G的初态是所有的定点都没有访问过,在G中任选一定点V为初始出发点,首先访问出发点并标记,然后依次从V出发搜索V的每个相邻点W,若W未曾出现过,则对W进行深度优先遍历(DFS),知道所有和V有路径相通的定点被访问. 如果从V0开始寻找一条长度为4的路径的话: 思路步骤: 先寻找V0的所有相邻点:dis{v1,v2,v3},V1没有访问过,所以对V1进行深度遍历并将V1标记为访问过,此时路径长度为1

数据挖掘算法学习(一)K-Means算法

博主最近实习开始接触数据挖掘,将学习笔记分享给大家.目前用的软件是weka,下篇文章会着重讲解. 算法简介: K-Means算法是输入聚类个数k,以及包含n个数据对象的数据库,输出满足方差最小标准的k个聚类.并使得所获得的聚类满足:同一聚类中的对象相似度较高:而不同聚类对象相似度较小. 算法假设: 均方误差是计算群组分散度的最佳参数. 算法输入: 聚类个数k:包含n个数据对象的数据集. 算法输出: k个聚类 算法思想: (a)绿点表示数据集在二级的欧几里德空间,初始化的中心点u1和u2用红的和蓝

算法学习——分治算法

这是从网上查到的概念资料,先收来~ 一.基本概念 在计算机科学中,分治法是一种很重要的算法.字面上的解释是“分而治之”,就是把一个复杂的问题分成两个或更多的相同或相似的子问题,再把子问题分成更小的子问题……直到最后子问题可以简单的直接求解,原问题的解即子问题的解的合并.这个技巧是很多高效算法的基础,如排序算法(快速排序,归并排序),傅立叶变换(快速傅立叶变换)…… 任何一个可以用计算机求解的问题所需的计算时间都与其规模有关.问题的规模越小,越容易直接求解,解题所需的计算时间也越少.例如,对于n个

Python之路,Day21 - 常用算法学习

Python之路,Day21 - 常用算法学习 本节内容 算法定义 时间复杂度 空间复杂度 常用算法实例 1.算法定义 算法(Algorithm)是指解题方案的准确而完整的描述,是一系列解决问题的清晰指令,算法代表着用系统的方法描述解决问题的策略机制.也就是说,能够对一定规范的输入,在有限时间内获得所要求的输出.如果一个算法有缺陷,或不适合于某个问题,执行这个算法将不会解决这个问题.不同的算法可能用不同的时间.空间或效率来完成同样的任务.一个算法的优劣可以用空间复杂度与时间复杂度来衡量. 一个算

[算法学习笔记]直接插入排序笔记

直接插入排序概念: 带排元素放在elem[0...n-1]中,初始化时,elem[0]自成1个有序区,无序区为elem[1...n-1],从i=1起,到i=n-1,依次将elem[i]插入有序区[0...n-1]中 直接插入排序算法步骤: 1.在当前有序区域R[1,i-1]中查找R[i]的正确插入位置K(1<=K<=i-1) 2.将R[K,i-1]中的记录均向后移动 3.移动后腾出K位置,插入R[i] (最坏)时间复杂度:O(n^2) 空间复杂度:O(1) /// <summary>

技术学习步骤

java技术学习步骤 ? 一.入门 二.基础巩固 三.深入学习 四.源码剖析 五.总结分析 语言基础 <java核心技术卷I> <java编程思想> <java核心技术卷II> <Effective java > <java 特种兵> ? ? 框架技术 Struts2:<深入浅出Struts2> ? ? ? ? ? ? ?<Strut2实战> Hibernate:<精通Hibernate> Spring:<

八大排序算法学习笔记:冒泡排序

冒泡排序(Bubble Sort,台湾译为:泡沫排序或气泡排序)是一种简单的排序算法. 它重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来.走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成.这个算法的名字由来是因为越小的元素会经由交换慢慢"浮"到数列的顶端. 算法原理: 比较相邻的元素.如果第一个比第二个大,就交换他们两个. 对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对.在这一点,最后的元素应该会是最大的数. 针对所有

由LCS到编辑距离—动态规划入门—算法学习笔记

一切计算机问题,解决方法可以归结为两类:分治和封装.分治是减层,封装是加层. 动态规划问题同样可以用这种思路,分治. 它可以划分为多个子问题解决,那这样是不是用简单的递归就完成了?也许是的,但是这样会涉及太多的不便的操作.因为子问题有重叠! 针对这种子问题有重叠的情况的解决,就是提高效率的关键. 所以动态规划问题可以总结为:最优子结构和重叠子问题. 解决这个子问题的方式的关键就是:memoization,备忘录. 动态规划算法分以下4个步骤: 描述最优解的结构 递归定义最优解的值 按自底向上的方

分治算法学习 Divide and Conquer

分治思想: 分治算法的思想就是 对于某些特定种类的问题  如果问题的规模很小,那么就直接解决,如果问题的规模比较大,那么就把问题先分解为规模小的但是问题相同的子问题 ,并且不断分解直到规模足够小,再递归地解决这些问题 如果原问题可分割成k个子问题,1<k≤n,且这些子问题都可解并可利用这些子问题的解求出原问题的解,那么这种分治法就是可行的. 递归与分治经常是一起使用的 能够用分治的情况 : 1.问题复杂性随规模减小而减小 2.问题具有最优子结构性质        最优子结构:如果问题的最优解所包