POJ 2096 (dp求期望)

A - Collecting Bugs

Time Limit:10000MS     Memory Limit:64000KB     64bit IO Format:%I64d & %I64u

Submit Status

Appoint description: 
System Crawler  (2014-05-15)

Description

Ivan is fond of collecting. Unlike other people who collect post stamps, coins or other material stuff, he collects software bugs. When Ivan gets a new program, he classifies all possible bugs into n categories. Each day he discovers exactly one bug in the program and adds information about it and its category into a spreadsheet. When he finds bugs in all bug categories, he calls the program disgusting, publishes this spreadsheet on his home page, and forgets completely about the program. 
Two companies, Macrosoft and Microhard are in tight competition. Microhard wants to decrease sales of one Macrosoft program. They hire Ivan to prove that the program in question is disgusting. However, Ivan has a complicated problem. This new program has s subcomponents, and finding bugs of all types in each subcomponent would take too long before the target could be reached. So Ivan and Microhard agreed to use a simpler criteria --- Ivan should find at least one bug in each subsystem and at least one bug of each category. 
Macrosoft knows about these plans and it wants to estimate the time that is required for Ivan to call its program disgusting. It‘s important because the company releases a new version soon, so it can correct its plans and release it quicker. Nobody would be interested in Ivan‘s opinion about the reliability of the obsolete version. 
A bug found in the program can be of any category with equal probability. Similarly, the bug can be found in any given subsystem with equal probability. Any particular bug cannot belong to two different categories or happen simultaneously in two different subsystems. The number of bugs in the program is almost infinite, so the probability of finding a new bug of some category in some subsystem does not reduce after finding any number of bugs of that category in that subsystem. 
Find an average time (in days of Ivan‘s work) required to name the program disgusting.

Input

Input file contains two integer numbers, n and s (0 < n, s <= 1 000).

Output

Output the expectation of the Ivan‘s working days needed to call the program disgusting, accurate to 4 digits after the decimal point.

Sample Input

1 2

Sample Output

3.0000

题意及分析:转自:http://blog.csdn.net/morgan_xww/article/details/6774708 dp求期望的题。 
  • 题意:一个软件有s个子系统,会产生n种bug。
  • 某人一天发现一个bug,这个bug属于某种bug,发生在某个子系统中。
  • 求找到所有的n种bug,且每个子系统都找到bug,这样所要的天数的期望。
  • 需要注意的是:bug的数量是无穷大的,所以发现一个bug,出现在某个子系统的概率是1/s,
  • 属于某种类型的概率是1/n。
  • 解法:
  • dp[i][j]表示已经找到i种bug,并存在于j个子系统中,要达到目标状态的天数的期望。
  • 显然,dp[n][s]=0,因为已经达到目标了。而dp[0][0]就是我们要求的答案。
  • dp[i][j]状态可以转化成以下四种:
  • dp[i][j]    发现一个bug属于已经找到的i种bug和j个子系统中
  • dp[i+1][j]  发现一个bug属于新的一种bug,但属于已经找到的j种子系统
  • dp[i][j+1]  发现一个bug属于已经找到的i种bug,但属于新的子系统
  • dp[i+1][j+1]发现一个bug属于新的一种bug和新的一个子系统
  • 以上四种的概率分别为:
  • p1 =     i*j / (n*s)
  • p2 = (n-i)*j / (n*s)
  • p3 = i*(s-j) / (n*s)
  • p4 = (n-i)*(s-j) / (n*s)
  • 又有:期望可以分解成多个子期望的加权和,权为子期望发生的概率,即 E(aA+bB+...) = aE(A) + bE(B) +...
  • 所以:
  • dp[i,j] = p1*dp[i,j] + p2*dp[i+1,j] + p3*dp[i,j+1] + p4*dp[i+1,j+1] + 1;
  • 整理得:
  • dp[i,j] = ( 1 + p2*dp[i+1,j] + p3*dp[i,j+1] + p4*dp[i+1,j+1] )/( 1-p1 )
  • = ( n*s + (n-i)*j*dp[i+1,j] + i*(s-j)*dp[i,j+1] + (n-i)*(s-j)*dp[i+1,j+1] )/( n*s - i*j )
 1 #include<iostream>
 2 #include<cstring>
 3 #include<cstdlib>
 4 #include<cstdio>
 5 #include<algorithm>
 6 #include<cmath>
 7 #include<queue>
 8 #include<map>
 9 #include<vector>
10 #include<set>
11
12 #define N 1005
13 #define M 100000
14 #define inf 1000000007
15 #define mod 1000000007
16 #define mod2 100000000
17 #define ll long long
18 #define maxi(a,b) (a)>(b)? (a) : (b)
19 #define mini(a,b) (a)<(b)? (a) : (b)
20
21 using namespace std;
22
23 int n;
24 int s;
25 double dp[N][N];
26 double p1,p2;
27
28 void ini()
29 {
30     memset(dp,0,sizeof(dp));
31     p1=(1.0)*1/n;
32     p2=(1.0)/s;
33    // printf(" %.4f %.4f\n",p1,p2);
34 }
35
36 void solve()
37 {
38     int i,j;
39     for(i=n;i>=0;i--){
40         for(j=s;j>=0;j--){
41             if(i==n && j==s) continue;
42             dp[i][j]=1+dp[i+1][j]*p1*(n-i)*p2*j+dp[i][j+1]*p1*i*p2*(s-j)
43                 +dp[i+1][j+1]*p1*(n-i)*p2*(s-j);
44             dp[i][j]/=(1-p1*i*p2*j);
45         }
46     }
47
48    // for(i=n;i>=0;i--){
49     //    for(j=s;j>=0;j--){
50     //        printf(" i=%d j=%d dp=%.4f\n",i,j,dp[i][j]);
51     //    }
52     //}
53 }
54
55 void out()
56 {
57     printf("%.4f\n",dp[0][0]);
58 }
59
60 int main()
61 {
62     //freopen("data.in","r",stdin);
63     //freopen("data.out","w",stdout);
64     //scanf("%d",&T);
65    // for(int cnt=1;cnt<=T;cnt++)
66    // while(T--)
67     while(scanf("%d%d",&n,&s)!=EOF)
68     {
69         ini();
70         solve();
71         out();
72     }
73     return 0;
74 }
时间: 2024-10-15 09:07:50

POJ 2096 (dp求期望)的相关文章

Poj 2096 (dp求期望 入门)

/ dp求期望的题. 题意:一个软件有s个子系统,会产生n种bug. 某人一天发现一个bug,这个bug属于某种bug,发生在某个子系统中. 求找到所有的n种bug,且每个子系统都找到bug,这样所要的天数的期望. 需要注意的是:bug的数量是无穷大的,所以发现一个bug,出现在某个子系统的概率是1/s, 属于某种类型的概率是1/n. 解法: dp[i][j]表示已经找到i种bug,并存在于j个子系统中,要达到目标状态的天数的期望. 显然,dp[n][s]=0,因为已经达到目标了.而dp[0][

POJ 2096 Collecting Bugs(概率DP求期望)

传送门 Collecting Bugs Time Limit: 10000MS Memory Limit: 64000K Total Submissions: 4333 Accepted: 2151 Case Time Limit: 2000MS Special Judge Description Ivan is fond of collecting. Unlike other people who collect post stamps, coins or other material stu

HDU 4405 Aeroplane chess (概率DP求期望)

题意:有一个n个点的飞行棋,问从0点掷骰子(1~6)走到n点需要步数的期望 其中有m个跳跃a,b表示走到a点可以直接跳到b点. dp[ i ]表示从i点走到n点的期望,在正常情况下i点可以到走到i+1,i+2,i+3,i+4,i+5,i+6 点且每个点的概率都为1/6 所以dp[i]=(dp[i+1]+dp[i+2]+dp[i+3]+dp[i+4]+dp[i+5]+dp[i+6])/6  + 1(步数加一). 而对于有跳跃的点直接为dp[a]=dp[b]; #include<stdio.h>

HDU4336-Card Collector(概率DP求期望)

Card Collector Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 2195    Accepted Submission(s): 1034 Special Judge Problem Description In your childhood, do you crazy for collecting the beautifu

HDU3853-LOOPS(概率DP求期望)

LOOPS Time Limit: 15000/5000 MS (Java/Others)    Memory Limit: 125536/65536 K (Java/Others) Total Submission(s): 1864    Accepted Submission(s): 732 Problem Description Akemi Homura is a Mahou Shoujo (Puella Magi/Magical Girl). Homura wants to help h

bnu 12639 Cards (dp求期望)

bnu 12639 Cards dp求期望 区分 全局最优选择 和 当前最优选择. 本题是当前最优选择. 状态表示: double dp[16][16][16][16][5][5]; bool vis[16][16][16][16][5][5]; 状态下参数: vector<int> up, vector<int> tmp. so,记忆化搜索 + 回溯 //#pragma warning (disable: 4786) //#pragma comment (linker, &quo

HDU4405-Aeroplane chess(概率DP求期望)

Aeroplane chess Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 1182    Accepted Submission(s): 802 Problem Description Hzz loves aeroplane chess very much. The chess map contains N+1 grids lab

HDU 4050 wolf5x (概率DP 求期望)

题意:有N个格子,1~N,起点在0,每个格子有一个状态(0,1,2,3),每次可以跨[a,b]步, 问走完N个格子需要步数的期望,每次尽量走小的步数,即尽量走a步,不能则走a+1,-- 状态0意味着你不能踏进对应的网格. 状态1意味着你可以??步入网格用你的左腿. 状态2意味着你可以??步入网格用你的右腿. 状态3意味着你可以进入网格用任何你的腿,而接下来的步骤中,您可以使用任何的腿;即你不需要遵循上述规则. 思路:借鉴了各路大神的思想理解了下. dp[i][j] :表示走到第 i 个格子在 j

Codeforces 235B Let&#39;s Play Osu! (概率dp求期望+公式变形)

B. Let's Play Osu! time limit per test:2 seconds memory limit per test:256 megabytes You're playing a game called Osu! Here's a simplified version of it. There are n clicks in a game. For each click there are two outcomes: correct or bad. Let us deno