简单dp总结

1.poj 1160

Post Office

Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 16455   Accepted: 8916

Description

There is a straight highway with villages alongside the highway. The highway is represented as an integer axis, and the position of each village is identified with a single integer coordinate. There are no two villages in the same position. The distance between two positions is the absolute value of the difference of their integer coordinates.

Post offices will be built in some, but not necessarily all of the villages. A village and the post office in it have the same position. For building the post offices, their positions should be chosen so that the total sum of all distances between each village and its nearest post office is minimum.

You are to write a program which, given the positions of the villages and the number of post offices, computes the least possible sum of all distances between each village and its nearest post office.

Input

Your program is to read from standard input. The first line contains two integers: the first is the number of villages V, 1 <= V <= 300, and the second is the number of post offices P, 1 <= P <= 30, P <= V. The second line contains V integers in increasing order. These V integers are the positions of the villages. For each position X it holds that 1 <= X <= 10000.

Output

The first line contains one integer S, which is the sum of all distances between each village and its nearest post office.

Sample Input

10 5
1 2 3 6 7 9 11 22 44 50

Sample Output

9

dp【i】[j]=dp[k][j-1]+sum[k+1][i];注意sum数组可以进行优化
#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<cstdlib>
#include<algorithm>
#include<cmath>
using namespace std;
#define INF 0x7fffffff
int v,p,dp[310][31],a[310],sum[310][310];
int main()
{
    while(scanf("%d%d",&v,&p)!=EOF)
    {
        memset(dp,0,sizeof(dp));
        for(int i=1;i<=v;i++)
            scanf("%d",&a[i]);
        for(int i=1;i<=v;i++)
        {
            for(int j=i+1;j<=v;j++)
            {
                sum[i][j]=sum[i][j-1]+a[j]-a[(i+j)/2];
            }
        }
        for(int i=1;i<=v;i++)
        {
            dp[i][1]=sum[1][i];
        }
        for(int j=2;j<=p;j++)
        {
            for(int i=j+1;i<=v;i++)
            {
                dp[i][j]=INF;
                for(int k=j;k<=i;k++)
                    dp[i][j]=min(dp[i][j],dp[k][j-1]+sum[k+1][i]);
            }
        }
        printf("%d\n",dp[v][p]);
    }
    return 0;
}

  2.poj 1050

To the Max

Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 42088   Accepted: 22375

Description

Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1*1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle. 
As an example, the maximal sub-rectangle of the array:

0 -2 -7 0 
9 2 -6 2 
-4 1 -4 1 
-1 8 0 -2 
is in the lower left corner:

9 2 
-4 1 
-1 8 
and has a sum of 15.

Input

The input consists of an N * N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N^2 integers separated by whitespace (spaces and newlines). These are the N^2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].

Output

Output the sum of the maximal sub-rectangle.

Sample Input

4
0 -2 -7 0 9 2 -6 2
-4 1 -4  1 -1

8  0 -2

Sample Output

15

相当于最大连续子序列和而已,水。。。。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<cmath>
#include<algorithm>
#include<cstdlib>
using namespace std;
int a[101][101],n,cal[101][101],sum,maxx;
int main()
{
    while(scanf("%d",&n)!=EOF)
    {
        sum=0,maxx=0;
        for(int i=1;i<=n;i++)
            for(int j=1;j<=n;j++)
                scanf("%d",&a[i][j]);
        for(int i=1;i<=n;i++)
        {
            for(int j=1;j<=n;j++)
            {
                cal[i][j]=cal[i][j-1]+a[i][j];
            }
        }
        for(int i=1;i<=n;i++)
        {
            for(int j=i+1;j<=n;j++)
            {
                sum=0;
                for(int k=1;k<=n;k++)
                {
                    sum+=cal[k][j]-cal[k][i-1];
                    if(sum>maxx)
                        maxx=sum;
                    else if(sum<0)
                        sum=0;
                }
            }
        }
        printf("%d\n",maxx);
    }
    return 0;
}

  

时间: 2024-12-29 12:02:09

简单dp总结的相关文章

POJ 3250 Bad Hair Day 简单DP 好题

Description Some of Farmer John's N cows (1 ≤ N ≤ 80,000) are having a bad hair day! Since each cow is self-conscious about her messy hairstyle, FJ wants to count the number of other cows that can see the top of other cows' heads. Each cow i has a sp

hdu1207 汉诺塔II 简单dp

本文出自:http://blog.csdn.net/svitter 题意:汉诺塔,多了一根柱子,问你寻找最快的移动次数. dp [ n ] = dp [ n - j ] * 2 + pow( 2, j ) - 1; 就是把j个汉诺塔移到一根上dp[ n - j ],然后就是普通的汉诺塔问题,即2^n - 1次移动, 然后把剩下的移动过去dp [ n - j ]. 注意pow(2, j )可能超出long long int范围.写二的次方的时候也可用移位算法. #include <iostream

POJ1088:滑雪(简单dp)

题目链接:  http://poj.org/problem?id=1088 题目要求: 一个人可以从某个点滑向上下左右相邻四个点之一,当且仅当高度减小.求可以滑落的最长长度. 题目解析: 首先要先排一下序,因为只能高度递减才能滑行.之后就很简单了,就是简单DP. 即:要求的滑坡是一条节点递减并依次相邻的最长路径,可以先根据高度将所有的点进行排序,在i点的时候,遍历0~i-1个点(升序排序,i前面的点的高度一定小于等于i),取相邻点间的大的路径长度 代码如下: #include <iostream

hdu 1087 简单dp

思路和2391一样的.. <span style="font-size:24px;">#include<stdio.h> #include<string.h> #include<iostream> #include<algorithm> using namespace std; const int inf=(0x7f7f7f7f); int main() { int a; int s[10005]; int w[10005];

hdu1087 简单DP

I - 简单dp 例题扩展 Crawling in process... Crawling failed Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submit Status Description Nowadays, a kind of chess game called “Super Jumping! Jumping! Jumping!” is very popular in HD

2014 HDU多校弟九场I题 不会DP也能水出来的简单DP题

听了ZWK大大的思路,就立马1A了 思路是这样的: 算最小GPA的时候,首先每个科目分配到69分(不足的话直接输出GPA 2),然后FOR循环下来使REMAIN POINT减少,每个科目的上限加到100即可 算最大GPA的时候,首先每个科目分配到60分,然后FOR循环下来使REMAIN POINT减少,每个科目的上限加到85即可,如果还有REMAIN POINT,就FOR循环下来加到100上限即可 不会DP 阿 QAQ 过段时间得好好看DP了  =  = 于是默默的把这题标记为<水题集> //

Codeforces 41D Pawn 简单dp

题目链接:点击打开链接 给定n*m 的矩阵 常数k 下面一个n*m的矩阵,每个位置由 0-9的一个整数表示 问: 从最后一行开始向上走到第一行使得路径上的和 % (k+1) == 0 每个格子只能向或走一步 求:最大的路径和 最后一行的哪个位置作为起点 从下到上的路径 思路: 简单dp #include <cstdio> #include <algorithm> #include<iostream> #include<string.h> #include &

HDU 4826 简单DP

Problem Description 度度熊是一只喜欢探险的熊,一次偶然落进了一个m*n矩阵的迷宫,该迷宫只能从矩阵左上角第一个方格开始走,只有走到右上角的第一个格子才算走出迷宫,每一次只能走一格,且只能向上向下向右走以前没有走过的格子,每一个格子中都有一些金币(或正或负,有可能遇到强盗拦路抢劫,度度熊身上金币可以为负,需要给强盗写欠条),度度熊刚开始时身上金币数为0,问度度熊走出迷宫时候身上最多有多少金币? Input 输入的第一行是一个整数T(T < 200),表示共有T组数据.每组数据的

UVA - 11584 划分字符串的回文串子串; 简单dp

/** 链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=34398 UVA - 11584 划分字符串的回文串子串: 简单dp 题目大意: 给一个字符串, 要求把它分割成若干个子串,使得每个子串都是回文串.问最少可以分割成多少个. 定义:dp[i]表示前0~i内的字符串划分成的最小回文串个数: dp[i] = min(dp[j]+1 | j+1~i是回文串); 先预处理flag[i][j]表示以i~j内的字符串为回文串

poj 2193 Lenny&#39;s Lucky Lotto Lists 简单dp

//poj 2193 //sep9 #include <iostream> using namespace std; typedef __int64 INT; INT dp[16][2048]; int n,m; int main() { int cases,t=0; scanf("%d",&cases); while(cases--){ scanf("%d%d",&n,&m); memset(dp,0,sizeof(dp));