Human Action Recognition Using Kinect

Abstract: In this paper, a general approach for human action recognition is applied for classifying human movements into action classes .
The propose method uses Kinect for capturing depth  stream. The system performs preprocessing on depth information for reducing noisy
pixels and getting depth information in appropriate format. The background subtraction method is used for extracting region o f interest i.e.
human. The system extracts contours of person. The Hu moments are extracted from contours of person for training action classifier. The
Support Vector Machine (SVM) is used for classifying human activities.

Keywords: Contours, Hu moments, Support Vector Machine

个人感觉挺水的 ~~

特征 :深度图像中抠出的轮廓的Hu距

分类器 : svm

一个动作包含很多帧深度图像,所以它的训练和测试数据都是已经分割好的

一个训练样本就是一个动作中每帧的特征构成的矩阵吧,猜测~~

时间: 2024-10-02 11:59:22

Human Action Recognition Using Kinect的相关文章

Spatio-temporal feature extraction and representation for RGB-D human action recognition

propose a novel and effective framework to largely improve the performance of human action recognition using both the RGB videos and depth maps. The key contribution is the proposition of the sparse coding-based temporal pyramid matching approach (Sc

201904Online Human Action Recognition Based on Incremental Learning of Weighted Covariance Descriptors

论文标题:Online Human Action Recognition Based on Incremental Learning of Weighted Covariance Descriptors 来源/作者机构情况: 卧龙岗大学,第一次听说这个学校.竟然是在澳大利亚的一个学校.好吧,华人果然全球了 解决问题/主要思想贡献: 使用一个加权协方差因子,来积累前几帧的信息,使用增强学习来实现online learning,可以不用使用分好段的视频来预测动作 成果/优点: 缺点: 反思改进/灵感

【论文笔记】Spatial Temporal Graph Convolutional Networks for Skeleton-Based Action Recognition

Spatial Temporal Graph Convolutional Networks for Skeleton-Based Action Recognition 2018-01-28  15:45:13  研究背景和动机: 行人动作识别(Human Action Recognition)主要从多个模态的角度来进行研究,即:appearance,depth,optical-flow,以及 body skeletons.这其中,动态的人类骨骼点 通常是最具有信息量的,且能够和其他模态进行互补.

[论文理解] Attentional Pooling for Action Recognition

Attentional Pooling for Action Recognition 简介 这是一篇NIPS的文章,文章亮点是对池化进行矩阵表示,使用二阶池的矩阵表示,并将权重矩阵进行低秩分解,从而使分解后的结果能够自底向上和自顶向下的解释,并巧用attention机制来解释,我感觉学到了很多东西,特别是张量分解等矩阵论的知识点. 基础概念 低秩分解 目的:去除冗余并减少模型的权值参数 方法:使用两个K*1的卷积核代替掉一个K*K的卷积核 原理:权值向量主要分布在一些低秩子空间,使用少量的基就可

COMP255 Human activity recognition

Assignment: SDLC for human activityrecognition projectCOMP255 Human activity recognition @MQ S2, 2019 (updated on 11thAug 2019)This project aims to develop a human activity recognition IoT application toevaluate students’ knowledge in SDLC. This is a

动作识别新论文:A Novel Scheme for Training Two-Stream CNNs for Action Recognition

A Novel Scheme for Training Two-Stream CNNs for Action Recognition 创新点 1.使用cur算子来代表运动信息 2.提升了速度运算 3.依然是使用双端网络模型 4.对训练的的时候,收敛条件的判断,可以提速: pdf地址: https://link.springer.com/content/pdf/10.1007%2F978-3-030-33904-3.pdf 代码地址: 原文地址:https://www.cnblogs.com/ca

【CV论文阅读】Two stream convolutional Networks for action recognition in Vedios

论文的三个贡献 (1)提出了two-stream结构的CNN,由空间和时间两个维度的网络组成. (2)使用多帧的密集光流场作为训练输入,可以提取动作的信息. (3)利用了多任务训练的方法把两个数据集联合起来. Two stream结构 视屏可以分成空间与时间两个部分,空间部分指独立帧的表面信息,关于物体.场景等:而时间部分信息指帧间的光流,携带着帧之间的运动信息.相应的,所提出的网络结构由两个深度网络组成,分别处理时间与空间的维度. 可以看到,每个深度网络都会输出一个softmax层,最后会通过

【CV论文阅读】Dynamic image networks for action recognition

论文的重点在于后面approximation部分. 在<Rank Pooling>的论文中提到,可以通过训练RankSVM获得参数向量d,来作为视频帧序列的representation.而在dynamic论文中发现,这样的参数向量d,事实上与image是同等大小的,也就是说,它本身是一张图片(假如map与image同大小而不是提取的特征向量),那么就可以把图片输入到CNN中进行计算了.如下图可以看到一些参数向量d pooling的样例 参数向量d的快速计算 把计算d的过程定义一个函数.一个近似

A Simple Actions Recognition System

1. Problem Definition There's no doubt that researches and applications on the foundation of videos has become a popular field including intelligence surveillance, interactions between human and machines, content-based video retrieval and so on. Howe