【BZOJ】1927: [Sdoi2010]星际竞速(二分图+费用流)

http://www.lydsy.com/JudgeOnline/problem.php?id=1927

好神的题!!!!!!!!!!!!!!!!!!!

拆点后变成二分图,其实我们要求的就是类似路径覆盖这样的东西!!

只不过是加了权的。。

建图:

  • 源向i+n连容量1,费用为能力爆发的费用
  • 源向i连容量1,费用为0
  • i+n向汇连容量1,费用0
  • 如果有边x<y,连x到y+n容量为1,费用为时间

然后跑最小费用最大流

为什么这样就行了呢?

首先,最大流一定是一个对n个点的路径覆盖(即覆盖掉所有的附加点i+n)。

证明:因为源s向i+n连了容量1,i+n向汇连了容量1,且汇的上界为n,那么保证了最大流为一定n(且都覆盖了附加点i+n),这样就保证了n个点一定被覆盖。

如果有边x->y, 那么也就是在s向y+n连的边与x向y+n连的边里取费用小的。

因此最小费用就是一个答案。

#include <cstdio>
#include <cstring>
#include <cmath>
#include <string>
#include <iostream>
#include <algorithm>
#include <queue>
#include <set>
#include <map>
using namespace std;
typedef long long ll;
#define rep(i, n) for(int i=0; i<(n); ++i)
#define for1(i,a,n) for(int i=(a);i<=(n);++i)
#define for2(i,a,n) for(int i=(a);i<(n);++i)
#define for3(i,a,n) for(int i=(a);i>=(n);--i)
#define for4(i,a,n) for(int i=(a);i>(n);--i)
#define CC(i,a) memset(i,a,sizeof(i))
#define read(a) a=getint()
#define print(a) printf("%d", a)
#define dbg(x) cout << (#x) << " = " << (x) << endl
#define error(x) (!(x)?puts("error"):0)
#define rdm(x, i) for(int i=ihead[x]; i; i=e[i].next)
inline const int getint() { int r=0, k=1; char c=getchar(); for(; c<‘0‘||c>‘9‘; c=getchar()) if(c==‘-‘) k=-1; for(; c>=‘0‘&&c<=‘9‘; c=getchar()) r=r*10+c-‘0‘; return k*r; }

const int N=2005, oo=~0u>>2;
int ihead[N], cnt=1, q[N], n, p[N], d[N], vis[N];
struct dat { int next, to, cap, from, w; }e[N*N];
void add(int u, int v, int c, int w) {
	e[++cnt].next=ihead[u]; ihead[u]=cnt; e[cnt].to=v; e[cnt].from=u; e[cnt].cap=c; e[cnt].w=w;
	e[++cnt].next=ihead[v]; ihead[v]=cnt; e[cnt].to=u; e[cnt].from=v; e[cnt].cap=0; e[cnt].w=-w;
}
bool spfa(int s, int t) {
	for1(i, 0, t) vis[i]=0, d[i]=oo;
	d[s]=0; int front=0, tail=0;
	q[tail++]=s;
	while(front!=tail) {
		int u=q[front++], v; if(front==N) front=0; vis[u]=0;
		rdm(u, i) if(e[i].cap) {
			v=e[i].to;
			if(d[v]>d[u]+e[i].w) {
				d[v]=d[u]+e[i].w;
				p[v]=i;
				if(!vis[v]) {
					vis[v]=1;
					if(d[v]<d[q[front]]) {
						--front; if(front<0) front+=N;
						q[front]=v;
					}
					else {
						q[tail++]=v; if(tail==N) tail=0;
					}
				}
			}
		}
	}
	return d[t]!=oo;
}
int mcf(int s, int t) {
	int ret=0, f, u;
	while(spfa(s, t)) {
		f=oo;
		for(u=t; u!=s; u=e[p[u]].from) f=min(f, e[p[u]].cap);
		for(u=t; u!=s; u=e[p[u]].from) e[p[u]].cap-=f, e[p[u]^1].cap+=f;
		ret+=f*d[t];
	}
	return ret;
}
int main() {
	read(n);
	int m=getint();
	int s=0, t=n+n+1;
	for1(i, 1, n) add(s, i+n, 1, getint());
	for1(i, 1, n) add(s, i, 1, 0);
	for1(i, 1, n) add(i+n, t, 1, 0);
	for1(i, 1, m) {
		int x=getint(), y=getint();
		if(x>y) swap(x, y);
		add(x, y+n, 1, getint());
	}
	printf("%d\n", mcf(s, t));
	return 0;
}

  


Description

10 年一度的银河系赛车大赛又要开始了。作为全银河最盛大的活动之一, 夺得这个项目的冠军无疑是很多人的梦想,来自杰森座 α星的悠悠也是其中之一。 赛车大赛的赛场由 N 颗行星和M条双向星际航路构成,其中每颗行星都有 一个不同的引力值。大赛要求车手们从一颗与这 N 颗行星之间没有任何航路的 天体出发,访问这 N 颗行星每颗恰好一次,首先完成这一目标的人获得胜利。 由于赛制非常开放,很多人驾驶着千奇百怪的自制赛车来参赛。这次悠悠驾 驶的赛车名为超能电驴,这是一部凝聚了全银河最尖端科技结晶的梦幻赛车。作 为最高科技的产物,超能电驴有两种移动模式:高速航行模式和能力爆发模式。 在高速航行模式下,超能电驴会展开反物质引擎,以数倍于光速的速度沿星际航 路高速航行。在能力爆发模式下,超能电驴脱离时空的束缚,使用超能力进行空 间跳跃——在经过一段时间的定位之后,它能瞬间移动到任意一个行星。 天不遂人愿,在比赛的前一天,超能电驴在一场离子风暴中不幸受损,机能 出现了一些障碍:在使用高速航行模式的时候,只能由每个星球飞往引力比它大 的星球,否则赛车就会发生爆炸。 尽管心爱的赛车出了问题,但是悠悠仍然坚信自己可以取得胜利。他找到了 全银河最聪明的贤者——你,请你为他安排一条比赛的方案,使得他能够用最少 的时间完成比赛。

Input

第一行是两个正整数 N, M。 第二行 N 个数 A1~AN, 其中Ai表示使用能力爆发模式到达行星 i 所需的定位 时间。 接下来 M行,每行 3个正整数ui, vi, wi,表示在编号为 ui和vi的行星之间存 在一条需要航行wi时间的星际航路。 输入数据已经按引力值排序,也就是编号小的行星引力值一定小,且不会有 两颗行星引力值相同。

Output

仅包含一个正整数,表示完成比赛所需的最少时间。

Sample Input

3 3
1 100 100
2 1 10
1 3 1
2 3 1

Sample Output

12

HINT

说明:先使用能力爆发模式到行星 1,花费时间 1。 
然后切换到高速航行模式,航行到行星 2,花费时间10。 
之后继续航行到行星 3完成比赛,花费时间 1。 
虽然看起来从行星 1到行星3再到行星 2更优,但我们却不能那样做,因为
那会导致超能电驴爆炸。

对于 30%的数据 N≤20,M≤50; 
对于 70%的数据 N≤200,M≤4000; 
对于100%的数据N≤800, M≤15000。输入数据中的任何数都不会超过106
。 
输入数据保证任意两颗行星之间至多存在一条航道,且不会存在某颗行星到
自己的航道。

Source

第一轮Day2

时间: 2024-10-21 03:28:05

【BZOJ】1927: [Sdoi2010]星际竞速(二分图+费用流)的相关文章

BZOJ 1927: [Sdoi2010]星际竞速(最小费用最大流)

拆点,费用流... ----------------------------------------------------------------------------- #include<cstdio> #include<cstring> #include<algorithm> #include<iostream> #include<queue> #define rep( i, n ) for( int i = 0; i < n; +

bzoj 1927 [Sdoi2010]星际竞速(最小费用最大流)

1927: [Sdoi2010]星际竞速 Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 1576  Solved: 954[Submit][Status][Discuss] Description 10 年一度的银河系赛车大赛又要开始了.作为全银河最盛大的活动之一, 夺得这个项目的冠军无疑是很多人的梦想,来自杰森座 α星的悠悠也是其中之一. 赛车大赛的赛场由 N 颗行星和M条双向星际航路构成,其中每颗行星都有 一个不同的引力值.大赛要求车手们从一

BZOJ 1927: [Sdoi2010]星际竞速 费用流

1927: [Sdoi2010]星际竞速 Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/problem.php?id=1927 Description 10 年一度的银河系赛车大赛又要开始了.作为全银河最盛大的活动之一, 夺得这个项目的冠军无疑是很多人的梦想,来自杰森座 α星的悠悠也是其中之一. 赛车大赛的赛场由 N 颗行星和M条双向星际航路构成,其中每颗行星都有 一个不同的引力值.大赛要

bzoj 1927: [Sdoi2010]星际竞速

1 #include<cstdio> 2 #include<iostream> 3 #define M 1605 4 #define S 3000005 5 using namespace std; 6 int q[S],f[M],n,m,ans,a[M],head[M],next[S],u[S],v[S],c[S],fr[S],cnt=1,d[M],fro[M],T; 7 void jia(int a1,int a2,int a3,int a4) 8 { 9 cnt++; 10

bzoj 1927 [Sdoi2010]星际竞速【最小费用最大流】

果然还是不会建图- 设\( i \)到\( j \)有通路,代价为\( w[i][j] \),瞬移到i代价为\( a[i] \),瞬移到i代价为\( a[j] \),逗号前是流量. 因为每个点只能经过一次,所以流量限制为1,注意到从s开始很难保证出发点不同,所以但是又有联通条件,所以考虑每个扩展过的点(实际不用考虑反正早晚要扩展到)只向外扩展一个点,也就是每次只选两个联通的点(包括瞬移可达) 拆点的作用是加上费用,\( s \)到所有\( i \)连流量1费用0的边,所有\(i \)向t连流量1

1927: [Sdoi2010]星际竞速

1927: [Sdoi2010]星际竞速 Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 2040  Solved: 1257[Submit][Status][Discuss] Description 10年一度的银河系赛车大赛又要开始了.作为全银河最盛大的活动之一,夺得这个项目的冠军无疑是很多人的梦想,来自杰森座α星的悠悠也是其中之一.赛车大赛的赛场由N颗行星和M条双向星际航路构成,其中每颗行星都有一个不同的引力值.大赛要求车手们从一颗与这N颗行

BZOJ:1927: [Sdoi2010]星际竞速

题解:最小费用流+二分图模型: 左边表示出这个点,右边表示入这个点: #include<iostream> #include<cstdio> #include<cstring> #include<queue> #include<vector> using namespace std; const int maxn=10009; const int inf=1000000000; int n,m; int a[maxn]; struct Edge{

【Bzoj1927】星际竞速(费用流)

Description 题意:给定n个点m条边的无向图,只能从编号小的到编号大的,且要求经过所有点刚好一次,而且可以从任意点瞬移到i号点并花费代价Ai,求最小代价. n<=800,m<=15000 Solution Code #include <cstdio> #include <algorithm> #include <queue> #define N 2010 #define Inf 0x7fffffff using namespace std; str

bzoj1927: [Sdoi2010]星际竞速

跟上一题几乎一样... #include<cstdio> #include<cstring> #include<iostream> #include<algorithm> #include<queue> using namespace std; #define rep(i,n) for(int i=1;i<=n;i++) #define clr(x,c) memset(x,c,sizeof(x)) #define op() clr(head