Java for LeetCode 146 LRU Cache 【HARD】

Design and implement a data structure for Least Recently Used (LRU) cache. It should support the following operations: get and set.

get(key) - Get the value (will always be positive) of the key if the key exists in the cache, otherwise return -1.
set(key, value) - Set or insert the value if the key is not
already present. When the cache reached its capacity, it should
invalidate the least recently used item before inserting a new item.

解题思路:

实现LRU算法的缓冲类,由于cache会有频繁的读改操作,所以要有合适的数据结构来让 set 和 get 的复杂度很小,最好近 O(1)。
主要有两种思路:

一、用 Splay 实现,Splay 是棵 BST,同时在查找和修改的时候会让那个节点上浮到根节点,不过操作都是 O(log(n)) 级别的,而且有个问题,就是这棵树可能会变成一条链(正常节点都是按查询频率从上到下,所以很快,均摊小于 O(log(n)))。Splay 实现过于复杂,这里就不给出。
二、用双链表和 HashMap 实现。

链表的作用是记录节点的使用顺序。正常情况下 LRU 都是用这种做法的。
HashMap 实现用 key 找到 List 中的节点对象,找不到就在 List 中增加节点,并插入 HashMap。
按照要求得到或修改节点的 value。
修改节点的使用时间,也就是把 List 中的节点拉到 List 头部。
在第一步时如果节点个数大于可用容量,就将 List 的最后一个节点删去。
JAVA实现如下:

package oj.leetcode;

import java.util.*;

public class LRUCache {

    private int capacity;
    private Node head, tail;
    private HashMap<Integer, Node> keyNodeMap;

    public LRUCache(int capacity) {
        this.capacity = capacity;
        head = new Node(-1, -1);
        tail = new Node(0, 0);
        head.next = tail;
        tail.pre = head;
        this.keyNodeMap = new HashMap<Integer, Node>();
    }

    public int get(int key) {
        Node node = keyNodeMap.get(key);
        if (node != null) {
            moveToHead(node);
            return node.value;
        }
        return -1;
    }

    public void set(int key, int value) {
        Node node = null;
        if (keyNodeMap.containsKey(key)) {
            node = keyNodeMap.get(key);
            node.value = value;
        } else {
            node = new Node(key, value);
            if (keyNodeMap.size() == capacity) {
                keyNodeMap.remove(removeTail());
            }
            keyNodeMap.put(key, node);
        }
        moveToHead(node);
    }

    private void moveToHead(Node node) {
        if (node.pre != null || node.next != null) {
            node.next.pre = node.pre;
            node.pre.next = node.next;
        }
        node.next = head.next;
        head.next.pre = node;
        node.pre = head;
        head.next = node;
    }

    private int removeTail() {
        int lastKey = -1;
        if (tail.pre != head) {
            Node lastNode = tail.pre;
            lastKey = lastNode.key;
            lastNode.pre.next = tail;
            tail.pre = lastNode.pre;
            lastNode = null;
        }
        return lastKey;
    }

    class Node{
        int key;
        int value;
        Node pre;
        Node next;
        public Node(int k, int v) {
            key = k;
            value = v;
        }
    }
}
时间: 2024-10-21 20:49:13

Java for LeetCode 146 LRU Cache 【HARD】的相关文章

[leetcode]146. LRU Cache

Design and implement a data structure for Least Recently Used (LRU) cache. It should support the following operations: get and set. get(key) - Get the value (will always be positive) of the key if the key exists in the cache, otherwise return -1.set(

8.12 [LeetCode] 146 LRU Cache

Question link Design and implement a data structure for Least Recently Used (LRU) cache. It should support the following operations: get and set. get(key) - Get the value (will always be positive) of the key if the key exists in the cache, otherwise

Java for LeetCode 207 Course Schedule 【Unsolved】

There are a total of n courses you have to take, labeled from 0 to n - 1. Some courses may have prerequisites, for example to take course 0 you have to first take course 1, which is expressed as a pair: [0,1] Given the total number of courses and a l

Java for LeetCode 115 Distinct Subsequences【HARD】

Given a string S and a string T, count the number of distinct subsequences of T in S. A subsequence of a string is a new string which is formed from the original string by deleting some (can be none) of the characters without disturbing the relative

LeetCode 之 LRU Cache Java实现

LeetCode刷了41道题了,流程是按照戴兄的小书,很多不会的是参考Kim姐的代码,自己用Java抠腚的. 前几天做到了LRU Cache: C++的实现方法大同小异,大都用的是一个list加一个hash,hash中存储list节点地址,每次get从hash中寻key,有则将list相应节点放到链表头,没有则返回-1:每次set先判断hash中是否存在,存在则将相应节点移到表头,重置value值,如果不存在,判定长度是否达到预设的capacity,如果达到,删除表尾节点,新节点插入表头. 但是

No.146 LRU Cache

No.146 LRU Cache Design and implement a data structure for Least Recently Used (LRU) cache. It should support the following operations: get and set. get(key) - Get the value (will always be positive) of the key if the key exists in the cache, otherwi

由LeetCode的LRU Cache谈到操作系统中LRU算法

1 class LRUCache{ 2 public: 3 LRUCache(int capacity) { 4 size = capacity; 5 } 6 int get(int key) { 7 if(cacheMap.find(key)==cacheMap.end()) 8 return -1; 9 cacheList.splice(cacheList.begin(),cacheList,cacheMap[key]); 10 cacheMap[key] = cacheList.begin

LeetCode OJ - LRU Cache

题目: Design and implement a data structure for Least Recently Used (LRU) cache. It should support the following operations: get and set. get(key) - Get the value (will always be positive) of the key if the key exists in the cache, otherwise return -1.

146. LRU Cache(js)

146. LRU Cache Design and implement a data structure for Least Recently Used (LRU) cache. It should support the following operations: get and put. get(key) - Get the value (will always be positive) of the key if the key exists in the cache, otherwise