How many ways?? 矩阵快速幂 邻接矩阵意义

春天到了, HDU校园里开满了花, 姹紫嫣红, 非常美丽. 葱头是个爱花的人, 看着校花校草竞相开放, 漫步校园, 心情也变得舒畅. 为了多看看这迷人的校园, 葱头决定, 每次上课都走不同的路线去教室, 但是由于时间问题, 每次只能经过k个地方, 比方说, 这次葱头决定经过2个地方, 那他可以先去问鼎广场看看喷泉, 再去教室, 也可以先到体育场跑几圈, 再到教室. 他非常想知道, 从A 点恰好经过k个点到达B点的方案数, 当然这个数有可能非常大, 所以你只要输出它模上1000的余数就可以了. 你能帮帮他么?? 你可决定了葱头一天能看多少校花哦

Input输入数据有多组, 每组的第一行是2个整数 n, m(0 < n <= 20, m <= 100) 表示校园内共有n个点, 为了方便起见, 点从0到n-1编号,接着有m行, 每行有两个整数 s, t (0<=s,t<n) 表示从s点能到t点, 注意图是有向的.接着的一行是两个整数T,表示有T组询问(1<=T<=100), 
接下来的T行, 每行有三个整数 A, B, k, 表示问你从A 点到 B点恰好经过k个点的方案数 (k < 20), 可以走重复边。如果不存在这样的走法, 则输出0 
当n, m都为0的时候输入结束 
Output计算每次询问的方案数, 由于走法很多, 输出其对1000取模的结果Sample Input

4 4
0 1
0 2
1 3
2 3
2
0 3 2
0 3 3
3 6
0 1
1 0
0 2
2 0
1 2
2 1
2
1 2 1
0 1 3
0 0

Sample Output

2
0
1
3矩阵的k次方表示经过k次转移到达该点的路径次数
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<sstream>
#include<algorithm>
#include<queue>
#include<deque>
#include<iomanip>
#include<vector>
#include<cmath>
#include<map>
#include<stack>
#include<set>
#include<memory>
#include<list>
#include<string>
#include<functional>
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
#define MAXN  29
#define L 31
#define INF 1000000009
#define eps 0.00000001
#define MOD 1000
int n, m;
struct mat
{
    mat()
    {
        memset(data, 0, sizeof(data));
    }
    int data[MAXN][MAXN];
    mat operator*(const mat& rhs)
    {
        mat ret;
        for (int i = 0; i < n; i++)
        {
            for (int j = 0; j < n; j++)
            {
                if (data[i][j])
                {
                    for (int k = 0; k < n; k++)
                        ret.data[i][k] = (ret.data[i][k] + data[i][j] * rhs.data[j][k]) % MOD;
                }
            }
        }
        return ret;
    }
};
mat fpow(mat a, int k)
{
    mat tmp = a;
    mat ret;
    for (int i = 0; i < n; i++)
        ret.data[i][i] = 1;
    while (k)
    {
        if (k & 1)
            ret = tmp*ret;
        tmp = tmp*tmp;
        k /= 2;
    }
    return ret;
}
int main()
{
    while (scanf("%d%d", &n, &m), n + m)
    {
        int f, t, d;
        mat M;
        for (int i = 0; i < m; i++)
        {
            scanf("%d%d", &f, &t);
            M.data[f][t] = 1;
        }
        int T;
        scanf("%d", &T);
        while (T--)
        {
            scanf("%d%d%d", &f, &t, &d);
            mat ans = fpow(M, d);
            printf("%d\n", ans.data[f][t]);
        }
    }
}
时间: 2024-11-18 15:07:27

How many ways?? 矩阵快速幂 邻接矩阵意义的相关文章

HDU 2157 How many ways??(矩阵快速幂)

How many ways?? Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 1912    Accepted Submission(s): 692 Problem Description 春天到了, HDU校园里开满了花, 姹紫嫣红, 非常美丽. 葱头是个爱花的人, 看着校花校草竞相开放, 漫步校园, 心情也变得舒畅. 为了多看看这迷

HDOJ How many ways?? 2157【矩阵快速幂】

How many ways?? Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 2046    Accepted Submission(s): 758 Problem Description 春天到了, HDU校园里开满了花, 姹紫嫣红, 非常美丽. 葱头是个爱花的人, 看着校花校草竞相开放, 漫步校园, 心情也变得舒畅. 为了多看看这

HDU 2157 How many ways??(经典矩阵快速幂)

题意:求A经过K个点到B方案数 方法一: 1个0 1 的矩阵 A a[i][j] = 1 表示i 到 j可达 或者说 i 到 j 有1条路 或者说i到j经过一个点的方案数 路可以重复走 而A2 = A* A a[i][j] 的含义是 从i到j经过2个点的方案数 A的k次方 A[i,j]代表 i到j走k步的方案有a[i][j] 矩阵乘法的定义居然和这个模型如此契合,佩服,所以要非常熟悉矩阵乘法的具体步骤才能在这个题目中抽象出矩阵乘法可以正好实现两个定点间的所有可能情况 方法二: 动态规划的思路,状

luogu3263/bzoj4002 有意义的字符串 (数学+矩阵快速幂)

首先我们发现$\frac{b+\sqrt{d}}{2}$这个形式好像一元二次方程的求根公式啊(???反正我发现不了) 然后我们又想到虽然这个东西不好求但是$(\frac{b-\sqrt{d}}{2})^n$好像挺好求的啊(???反正我想不到)(由题目给的范围,这玩意在(-1,1)) 于是把这个方程写出来:$x^2-b+\frac{b^2-d}{4}=0$,设它的两根是$x_1=\frac{b+\sqrt{d}}{2} , x_2=\frac{b-\sqrt{d}}{2}$ 于是就是要求$\lfl

POJ 3734 Blocks(矩阵快速幂加递推)

Blocks Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6133   Accepted: 2931 Description Panda has received an assignment of painting a line of blocks. Since Panda is such an intelligent boy, he starts to think of a math problem of paint

(中等) CF 576D Flights for Regular Customers (#319 Div1 D题),矩阵快速幂。

In the country there are exactly n cities numbered with positive integers from 1 to n. In each city there is an airport is located. Also, there is the only one airline, which makes m flights. Unfortunately, to use them, you need to be a regular custo

poj2778DNA Sequence (AC自动机+矩阵快速幂)

转载请注明出处: http://www.cnblogs.com/fraud/          ——by fraud DNA Sequence Time Limit: 1000MS   Memory Limit: 65536K Description It's well known that DNA Sequence is a sequence only contains A, C, T and G, and it's very useful to analyze a segment of DN

fzuoj 2173(矩阵快速幂)

思路:用邻接矩阵存储图,然后矩阵的k次方即为答案.只需要修改矩阵乘法c[i][j] = min(c[i][j], a[i][k] + b[k][j])即可.并不难写关键是思路. 代码如下: 1 #include <stdio.h> 2 #include <string.h> 3 #include <iostream> 4 #include <algorithm> 5 #include <vector> 6 #include <queue&g

矩阵快速幂专题(一)

最近闲来无事,准备集中精力刷一波数论与图论.矩阵快速幂是数论里面的重要组成部分,值得我好好学习一下.因为题目比较多,分析也比较多,所以将此专题分成几个部分.做完这一专题,可能会暂时转向图论部分,然后等我组合数学学得差不多了,再回过头来继续做数论题. 矩阵快速幂算法的核心思想是将问题建模转化为数学模型(有一些简单题目是裸的矩阵模型,但是大部分难题就是难在要构造矩阵,用矩阵方法解决问题),推倒递推式,构造计算矩阵,用快速幂的思想求解矩阵A的n次方取mod,从而得到矩阵里面你需要的数据. 矩阵快速幂问