《DSP using MATLAB》示例Example 9.9

代码:

%% ------------------------------------------------------------------------
%%            Output Info about this m-file
fprintf(‘\n***********************************************************\n‘);
fprintf(‘        <DSP using MATLAB> Exameple 9.9 \n\n‘);

time_stamp = datestr(now, 31);
[wkd1, wkd2] = weekday(today, ‘long‘);
fprintf(‘      Now is %20s, and it is %7s  \n\n‘, time_stamp, wkd2);
%% ------------------------------------------------------------------------

% Given parameters:
I = 5; Rp = 0.1; As = 30; wp = pi/I; ws = pi*0.32;
[delta1, delta2] = db2delta(Rp, As); weights = [delta2/delta1, 1];
n = [0:50]; x = cos(0.5*pi*n);
n1 = n(1:17); x1 = x(17:33);     % for plotting purposes

%% -----------------------------------------------------------------
%%                             Plot
%% -----------------------------------------------------------------  

% Input signal
Hf1 = figure(‘units‘, ‘inches‘, ‘position‘, [1, 1, 8, 6], ...
	‘paperunits‘, ‘inches‘, ‘paperposition‘, [0, 0, 6, 4], ...
	‘NumberTitle‘, ‘off‘, ‘Name‘, ‘Exameple 9.9‘);
set(gcf,‘Color‘,‘white‘); 

TF = 10;

subplot(2, 2, 1);
Hs1 = stem(n1, x1, ‘filled‘); set(Hs1, ‘markersize‘, 2, ‘color‘, ‘g‘);
axis([-1, 17, -1.2, 1.2]); grid on;
xlabel(‘n‘, ‘vertical‘, ‘middle‘); ylabel(‘Amplitude‘);
title(‘Input Signal x(n)‘, ‘fontsize‘, TF);
set(gca, ‘xtick‘, [0:4:16]);
set(gca, ‘ytick‘, [-1, 0, 1]);

% Interpolation with Filter Design: Length M=31
M = 31; F = [0, wp, ws, pi]/pi; A = [I, I, 0, 0];
h = firpm(M-1, F, A, weights); y = upfirdn(x, h, I);
delay = (M-1)/2;           % Delay imparted by the filter
m = delay+1:1:50*I+delay+1; y = y(m); m = 1:81; y = y(81:161);   % for plotting

subplot(2, 2, 2);
Hs2 = stem(m, y, ‘filled‘); axis([-5, 85, -1.2, 1.2]); grid on;
xlabel(‘n‘, ‘vertical‘, ‘middle‘); ylabel(‘Amplitude‘);
title(‘ Output y(n): I = 5, Filter length=31‘, ‘fontsize‘, TF);
set(gca, ‘xtick‘, [0:4:16]*I);
set(gca, ‘ytick‘, [-1, 0, 1]);

% Interpolation with Filter Design: Length M = 51
M = 51; F = [0, wp, ws, pi]/pi; A = [I, I, 0, 0];
h = firpm(M-1, F, A, weights); y = upfirdn(x, h, I);
delay = (M-1)/2;           % Delay imparted by the filter
m = delay+1:1:50*I+delay+1; y = y(m); m = 1:81; y = y(81:161);   % for plotting

subplot(2, 2, 3);
Hs3 = stem(m, y, ‘filled‘); axis([-5, 85, -1.2, 1.2]); grid on;
set(Hs3, ‘markersize‘, 2, ‘color‘, ‘m‘);
xlabel(‘n‘, ‘vertical‘, ‘middle‘); ylabel(‘Amplitude‘);
title(‘Output y(n): I = 5, Filter length=51 ‘, ‘fontsize‘, TF);
set(gca, ‘xtick‘, [0:4:16]*I);
set(gca, ‘ytick‘, [-1, 0, 1]);

% Interpolation with Filter Design : Length M = 81
M = 81; F = [0, wp, ws, pi]/pi; A = [I, I, 0, 0];
h = firpm(M-1, F, A, weights); y = upfirdn(x, h, I);
delay = (M-1)/2;           % Delay imparted by the filter
m = delay+1:1:50*I+delay+1; y = y(m); m = 1:81; y = y(81:161);   % for plotting

subplot(2, 2, 4);
Hs4 = stem(m, y, ‘filled‘); axis([-5, 85, -1.2, 1.2]); grid on;
set(Hs4, ‘markersize‘, 2, ‘color‘, ‘m‘);
xlabel(‘n‘, ‘vertical‘, ‘middle‘); ylabel(‘Amplitude‘);
title(‘Output y(n): I = 5, Filter length=81 ‘, ‘fontsize‘, TF);
set(gca, ‘xtick‘, [0:4:16]*I);
set(gca, ‘ytick‘, [-1, 0, 1]);

  运行结果:

左上图是输入信号x(n)的一部分,右上图是使用长度为31的滤波器后得到的输出y(n)。对于滤波器延迟和过渡带响应来说,该图是正确的。令人惊讶的是插值后的信号不是其应该的模样。

峰值超过了1,形状有些变形。仔细看图9.20中的滤波器响应表现为宽的过渡带和小的衰减,必然会导致一些谱能量的泄漏,产生变形。

对于较大的阶数来说,滤波器低通特征较好。信号峰值接近1,并且其形状接近余弦波形。因此,一个好的滤波器设计甚至对一个简单的信号都是严格适用的。

时间: 2024-10-14 12:35:05

《DSP using MATLAB》示例Example 9.9的相关文章

DSP using MATLAB 示例Example3.21

代码: % Discrete-time Signal x1(n) % Ts = 0.0002; n = -25:1:25; nTs = n*Ts; Fs = 1/Ts; x = exp(-1000*abs(nTs)); Ts = 0.001; n = -5:1:5; nTs = n*Ts; Fs = 1/Ts; x = exp(-1000*abs(nTs)); % Analog Signal Dt = 0.00005; t = -0.005:Dt:0.005; xa = x * sinc(Fs*

DSP using MATLAB示例Example3.18

代码: % Analog Signal Dt = 0.00005; t = -0.005:Dt:0.005; xa = exp(-1000*abs(t)); % Continuous-time Fourier Transform Wmax = 2*pi*2000; K = 500; k = 0:1:K; % index array k for frequencies W = k*Wmax/K; % freqency between 0 and +pi, [0,pi] axis divided i

DSP using MATLAB 示例 Example3.19

代码: % Analog Signal Dt = 0.00005; t = -0.005:Dt:0.005; xa = exp(-1000*abs(t)); % Discrete-time Signal Ts = 0.0002; n = -25:1:25; x = exp(-1000*abs(n*Ts)); % Discrete-time Fourier Transform %Wmax = 2*pi*2000; K = 500; k = 0:1:K; w = pi*k/K; % index ar

DSP using MATLAB 示例 Example3.15

上代码: subplot(1,1,1); b = 1; a = [1, -0.8]; n = [0:100]; x = cos(0.05*pi*n); y = filter(b,a,x); figure('NumberTitle', 'off', 'Name', 'Input and Output sequence'); set(gcf,'Color','white'); subplot(2,1,1); stem(n,x); title('Input sequence'); xlabel('n'

DSP using MATlAB 示例Example2.10

上代码 % noise sequence 1 x = [3, 11, 7, 0, -1, 4, 2]; nx = [-3:3]; % given signal x(n) [y,ny] = sigshift(x,nx,2); % obtain x(n-2) set(gcf,'Color','white') subplot(2,1,1);stem(nx,x); title('sequence x(n)'); xlabel('n');ylabel('x(n)'); grid on subplot(2,

DSP using MATLAB 示例Example3.17

DSP using MATLAB示例Example3.6

代码: n = [-5:5]; x = (-0.9).^n; % x(n) = k = -200:200; w = (pi/100)*k; % [0,pi] axis divided into 101 points. X = x * (exp(-j*pi/100)) .^ (n'*k); magX = abs(X); angX = angle(X); realX = real(X); imagX = imag(X); set(gcf,'Color','white'); subplot(2,2,1

DSP using MATLAB 示例Example2.12

代码: b = [1]; a = [1, -0.9]; n = [-5:50]; h = impz(b,a,n); set(gcf,'Color','white'); %subplot(2,1,1); stem(n,h); title('Impulse Response'); xlabel('n'); ylabel('h(n)'); grid on; x = stepseq(0, -5, 50) - stepseq(10, -5, 50) y = filter(b, a, x); figure;

DSP using MATLAB 示例Example2.4

n = [0:10]; x = stepseq(0,0,10) - stepseq(10,0,10); [xe,xo,m] = evenodd(x,n); set(gcf,'Color',[1,1,1]) % 改变坐标外围背景颜色 stem(n,x); title('Rectangular Pulse'); xlabel('n'); ylabel('x(n)') ; axis([-10,10,0,1.2]) grid on figure set(gcf,'Color',[1,1,1]) stem

DSP using MATLAB 示例Example3.9

用到的性质 上代码: n = 0:100; x = cos(pi*n/2); k = -100:100; w = (pi/100)*k; % freqency between -pi and +pi , [0,pi] axis divided into 101 points. X = x * (exp(-j*pi/100)) .^ (n'*k); % DTFT of x % signal multiplied y = exp(j*pi*n/4) .* x; % signal multiplied