UVa 11440 (欧拉函数) Help Tomisu

题意:

给出N和M,统计区间x ∈ [2, N!],x满足所有素因子都大于M的x的个数。

分析:

首先将问题转化一下,所有素因子都大于M 等价于 这个数与M!互素

对于k大于M!,k与M!互素等价于 k % M! 与 M!互素

所以我们可以求出φ(M!)(φ为欧拉函数) 然后乘以N! / M!,最后答案再减一(因为是从2开始统计的)

欧拉函数的公式为a

phifac[n] = φ(n!),我们递推求phifac

当n为合数时,n!和(n-1)!的素因数的集合是一样的,所以phifac[n] = n * phifac[n-1]

当n为素数是,n!中多了一个素因子n,公式中也多了一项(1 - 1/n),所以phifac[n] = n * (n-1) / n * phifac[n-1] = (n-1) * phifac[n-1]

 1 #include <cstdio>
 2 #include <cmath>
 3
 4 const int maxn = 10000000 + 10;
 5 const int MOD = 100000007;
 6 int phifac[maxn];
 7 bool vis[maxn];
 8
 9 void sieve(int n)
10 {
11     int m = sqrt(n + 0.5);
12     for(int i = 2; i <= m; ++i) if(!vis[i])
13         for(int j = i*i; j <= n; j += i)
14             vis[j] = true;
15 }
16
17 int main()
18 {
19     sieve(10000000);
20     phifac[1] = phifac[2] = 1;
21     for(int i = 3; i <= 10000000; ++i)
22         phifac[i] = (long long) phifac[i-1] * (vis[i] ? i : i-1) % MOD;
23
24     int n, m;
25     while(scanf("%d%d", &n, &m) == 2)
26     {
27         if(n == 0 && m == 0) break;
28         int ans = phifac[m];
29         for(int i = m+1; i <= n; ++i) ans = (long long)ans * i % MOD;
30         printf("%d\n", (ans-1+MOD)%MOD);
31     }
32
33     return 0;
34 }

代码君

时间: 2024-10-17 00:34:32

UVa 11440 (欧拉函数) Help Tomisu的相关文章

UVa 11426 (欧拉函数 GCD之和) GCD - Extreme (II)

题意: 求sum{gcd(i, j) | 1 ≤ i < j ≤ n} 分析: 有这样一个很有用的结论:gcd(x, n) = i的充要条件是gcd(x/i, n/i) = 1,因此满足条件的x有phi(n/i)个,其中Phi为欧拉函数. 所以枚举i和i的倍数n,累加i * phi(n/i)即可. 1 #include <cstdio> 2 typedef long long LL; 3 4 const int maxn = 4000000; 5 6 int phi[maxn + 10]

UVA - 10820欧拉函数的应用

这是一道很基础的欧拉函数的题目 题意要求  (x,y) 互质 &&x<=n&&y<=n 求互质对数 可以运用容斥,求出 phi(n)=n(1-1/n1)(1-1/n2)......(1-1/nk); 因为(2,4) (4,2) 算两对,所以 答案为 2*f(n)+1; #include<stdio.h> #include<string.h> #include<stdlib.h> #include<iostream>

UVa 10837 (欧拉函数 搜索) A Research Problem

发现自己搜索真的很弱,也许做题太少了吧.代码大部分是参考别人的,=_=|| 题意: 给出一个phi(n),求最小的n 分析: 回顾一下欧拉函数的公式:,注意这里的Pi是互不相同的素数,所以后面搜索的时候要进行标记. 先找出所有的素数p,满足(p - 1)整除题目中所给的phi(n) 然后暴搜.. 素数打表打到1e4就够了,如果最后剩下一个大素数单独进行判断. 1 #include <cstdio> 2 #include <cmath> 3 #include <cstring&

UVA 11426 (欧拉函数&amp;&amp;递推)

题意:给你一个数N,求N以内和N的最大公约数的和 解题思路: 一开始直接想暴力做,4000000的数据量肯定超时.之后学习了一些新的操作. 题目中所要我们求的是N内gcd之和,设s[n]=s[n-1]+gcd(1,n)+gcd(2,n)+gcd(3,n)+gcd(4,n)....... 再设f[n]=gcd(1,n)+gcd(2,n)+gcd(3,n)+gcd(4,n).......; 思考一下,假设gcd(x,n)=ans,ans便是x和n的最大公约数,那么有几个ans我们将某ans的个数su

A Research Problem UVA - 10837 欧拉函数逆应用

平时看到的题目是给n求phi(n) 现在是给phi(n)求一个最小n 当一个数为素数是m=n*(1-1/n); 例如 12=13(1-1/13);所以可以得出 m%(n-1)==0 时,n-1为n的素因子 m=n*(1-1/p1)*(1-1/pn); n=p1^x1*(p1-1)*p2^x2(p2-1)......; #include <iostream> #include <stdio.h> #include <cmath> #include <algorith

UVA 11440 - Help Tomisu(欧拉函数)

UVA 11440 - Help Tomisu 题目链接 题意:给定n和m,求[2,n!]中,所有质因子个数都大于m的个数 思路:?(m!)表示小于m!并与m!互质的个数,而与m!互质的个数,他的质因子肯定不包含1-m,因此就是满足条件的.然后对于这题而言,则是要求n!中,不与m!互质的个数,答案取模100000007 那么先看一个证明: 求kn中与n互质的个数,答案为k?(n). ?(n)表示1-n中与n互质的个数,那么由此考虑[n + 1, 2n], [2n + 1, 3n]...这每个区间

Help Tomisu UVA - 11440 难推导+欧拉函数,给定正整数N和M, 统计2和N!之间有多少个整数x满足,x的所有素因子都大于M (2&lt;=N&lt;=1e7, 1&lt;=M&lt;=N, N-M&lt;=1E5) 输出答案除以1e8+7的余数。

/** 题目:Help Tomisu UVA - 11440 链接:https://vjudge.net/problem/UVA-11440 题意:给定正整数N和M, 统计2和N!之间有多少个整数x满足,x的所有素因子都大于M (2<=N<=1e7, 1<=M<=N, N-M<=1E5) 输出答案除以1e8+7的余数. 思路: lrjP338 由于x的所有素因子都>M:那么x与M!互质. 根据最大公约数的性质,对于x>y,x与y互质,那么x%y与y也互质. 由于N

UVA 10837 - A Research Problem(欧拉函数)

UVA 10837 - A Research Problem 题目链接 题意:给定phi(n),求最小满足的最小的n 思路:phi(n)=pk11(p1?1)?pk22(p2?1)?pk33(p3?1)....(p为质数),因此对于给定phi(n),先把满足条件phi(n)%(p?1)=0的素数全找出来,在这些素数基础上进行暴力搜索,枚举哪些素数用与不用,求出最小值.这样做看似时间复杂度很高,但是实际上,由于每次多选一个素数之后对于值是呈指数上升的,所以实际组合出来的情况并不会太多,因此是可行的

uva 11317 - GCD+LCM(欧拉函数+log)

题目链接:uva 11317 - GCD+LCM 题目大意:给定n,求出1~n里面两两的最大公约的积GCD和最小公倍数的积LCM,在10100进制下的位数. 解题思路:在n的情况下,对于最大公约数为i的情况又phi[n/i]次.求LCM就用两两乘积除以GCD即可. #include <cstdio> #include <cstring> #include <cmath> #include <algorithm> using namespace std; ty