题意:
给出N和M,统计区间x ∈ [2, N!],x满足所有素因子都大于M的x的个数。
分析:
首先将问题转化一下,所有素因子都大于M 等价于 这个数与M!互素
对于k大于M!,k与M!互素等价于 k % M! 与 M!互素
所以我们可以求出φ(M!)(φ为欧拉函数) 然后乘以N! / M!,最后答案再减一(因为是从2开始统计的)
欧拉函数的公式为a
phifac[n] = φ(n!),我们递推求phifac
当n为合数时,n!和(n-1)!的素因数的集合是一样的,所以phifac[n] = n * phifac[n-1]
当n为素数是,n!中多了一个素因子n,公式中也多了一项(1 - 1/n),所以phifac[n] = n * (n-1) / n * phifac[n-1] = (n-1) * phifac[n-1]
1 #include <cstdio> 2 #include <cmath> 3 4 const int maxn = 10000000 + 10; 5 const int MOD = 100000007; 6 int phifac[maxn]; 7 bool vis[maxn]; 8 9 void sieve(int n) 10 { 11 int m = sqrt(n + 0.5); 12 for(int i = 2; i <= m; ++i) if(!vis[i]) 13 for(int j = i*i; j <= n; j += i) 14 vis[j] = true; 15 } 16 17 int main() 18 { 19 sieve(10000000); 20 phifac[1] = phifac[2] = 1; 21 for(int i = 3; i <= 10000000; ++i) 22 phifac[i] = (long long) phifac[i-1] * (vis[i] ? i : i-1) % MOD; 23 24 int n, m; 25 while(scanf("%d%d", &n, &m) == 2) 26 { 27 if(n == 0 && m == 0) break; 28 int ans = phifac[m]; 29 for(int i = m+1; i <= n; ++i) ans = (long long)ans * i % MOD; 30 printf("%d\n", (ans-1+MOD)%MOD); 31 } 32 33 return 0; 34 }
代码君
时间: 2024-10-17 00:34:32