poj1061--青蛙的约会--扩展欧几里得

Description

两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面。它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止。可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置。不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总能碰到对方的。但是除非这两只青蛙在同一时间跳到同一点上,不然是永远都不可能碰面的。为了帮助这两只乐观的青蛙,你被要求写一个程序来判断这两只青蛙是否能够碰面,会在什么时候碰面。 
我们把这两只青蛙分别叫做青蛙A和青蛙B,并且规定纬度线上东经0度处为原点,由东往西为正方向,单位长度1米,这样我们就得到了一条首尾相接的数轴。设青蛙A的出发点坐标是x,青蛙B的出发点坐标是y。青蛙A一次能跳m米,青蛙B一次能跳n米,两只青蛙跳一次所花费的时间相同。纬度线总长L米。现在要你求出它们跳了几次以后才会碰面。

Input

输入只包括一行5个整数x,y,m,n,L,其中x≠y < 2000000000,0 < m、n < 2000000000,0 < L < 2100000000。

Output

输出碰面所需要的跳跃次数,如果永远不可能碰面则输出一行"Impossible"

Sample Input

1 2 3 4 5

Sample Output

4

题解:

exgcd的简单应用。

因为两只青蛙的初始位置分别为x和y,设它们跳了k次,由题意得x+k*mΞy+k*n(mod L),求此同余方程的最小非负整数解。

移项,得x-yΞ(n-m)*k(mod L)

化为等式,为(n-m)*k+L*h=x-y

因为已知n-m,L和x-y,所以相当于ax+by=c的模型;

已知定理:若gcd(a,b)=d,则方程axΞc(mod p)在[0,p/d-1]上有唯一的解,a*x/dΞc/d(mod p/d),显然gcd(a/d,b/d)=1,所以有唯一的解。

利用扩展欧几里得求出一组特解x‘,带入本题中。当有解时,最小非负整数解ans=((x-y)/d*x‘%L/d+L/d)%L/d,

(x-y)%d!=0时无解。

 1 #include<iostream>
 2 #include<algorithm>
 3 #include<cstdio>
 4 #define ll long long
 5 using namespace std;
 6 ll exgcd(ll a,ll b,ll &x,ll &y)
 7 {
 8     if(b==0){x=1;y=0;return a;}
 9     ll t=exgcd(b,a%b,x,y);
10     ll tmp=x;
11     x=y;y=tmp-a/b*y;
12     return t;
13 }
14 int main()
15 {
16     ll x,y,m,n,L;
17     ll _X,_Y;
18     scanf("%lld%lld%lld%lld%lld",&x,&y,&m,&n,&L);
19     ll d=exgcd(n-m,L,_X,_Y);
20     ll r=L/d;
21     if((x-y)%d)printf("Impossible\n");
22     else
23     {
24         ll ans=((x-y)/d*_X%r+r)%r;
25         printf("%lld\n",ans);
26     }
27     return 0;
28  } 

时间: 2024-10-15 09:16:41

poj1061--青蛙的约会--扩展欧几里得的相关文章

[poj1061]青蛙的约会&lt;扩展欧几里得&gt;

题目链接:http://poj.org/problem?id=1061 其实欧几里得我一直都知道,只是扩展欧几里得有点蒙,所以写了一道扩展欧几里得裸题. 欧几里得算法就是辗转相除法,求两个数的最大公约数,算法是,a,b的最大公约数是gcd(b,a%b)然后不断递归下去,直到b=0 转换成c++语言就是 1 int ex_gcd(int a,int b) 2 { 3 if(b==0)return a; 4 return ex_gcd(b,a%b); 5 } 扩展欧几里得就是假设c=gcd(a,b)

POJ1061青蛙的约会[扩展欧几里得]

青蛙的约会 Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 108911   Accepted: 21866 Description 两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置.不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总

pku 1061 青蛙的约会 扩展欧几里得

青蛙的约会Time Limit: 1000MS Memory Limit: 10000KTotal Submissions: 120482 Accepted: 25449Description 两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置.不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总能碰到对方的.

POJ 1061 青蛙的约会 扩展欧几里得

扩展欧几里得模板套一下就A了,不过要注意刚好整除的时候,代码中有注释 #include <iostream> #include <cstdio> #include <cstring> #include <cmath> #include <algorithm> using namespace std; typedef long long ll; ll exgcd(ll a, ll b, ll&x, ll&y) { if (b ==

JZYZOJ1371 青蛙的约会 扩展欧几里得 GTMD数论

http://172.20.6.3/Problem_Show.asp?id=1371 http://www.cnblogs.com/jackge/archive/2013/04/22/3034925.html详细的题解,大概是网上能看到的最简单易懂的扩展欧几里得讲解了 代码 1 #include<iostream> 2 #include<cstdio> 3 #include<cstring> 4 #include<algorithm> 5 #include&

poj 1061 青蛙的约会 (扩展欧几里得模板)

青蛙的约会 Time Limit:1000MS     Memory Limit:10000KB     64bit IO Format:%I64d & %I64u Submit Status Practice POJ 1061 Description 两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置.不过青蛙们都是很

POJ1061——青蛙的约会(扩展欧几里德)

青蛙的约会 Description两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置.不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总能碰到对方的.但是除非这两只青蛙在同一时间跳到同一点上,不然是永远都不可能碰面的.为了帮助这两只乐观的青蛙,你被要求写一个程序来判断这两只青蛙是否能够碰面,会在什么时候碰面.

青蛙的约会 拓展欧几里得 +模板

题目描述 两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置.不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总能碰到对方的.但是除非这两只青蛙在同一时间跳到同一点上,不然是永远都不可能碰面的.为了帮助这两只乐观的青蛙,你被要求写一个程序来判断这两只青蛙是否能够碰面,会在什么时候碰面. 我们把这两只青蛙分别叫

POJ 1061 青蛙的约会(欧几里得扩展)

题意:已知青蛙1位置x,速度m,青蛙2位置y,速度n,纬线长度为l,求他们相遇时最少跳跃次数. 思路:设最小跳跃次数为k,则(x + k*m) - (y + k*n) = q*l:经过整理得到k*(n-m) + q*l = y - x:此时k和l为变量.欧几里得扩展中有线性方程a*x+b*y = c,当且仅当c是gdc(a,b)的整数倍的时候,所以这个题我们可以使用这个算法求得一个x0(x0已经被乘以了倍数),故x0为满足题意的一个解,X的解系为x0 + k[b/gcd(a,b)](具体证明不在