Sql Server中百万级数据的查询优化

万级别的数据真的算不上什么大数据,但是这个档的数据确实考核了普通的查询语句的性能,不同的书写方法有着千差万别的性能,都在这个级别中显现出来了,它不仅考核着你sql语句的性能,也考核着程序员的思想。

公司系统的一个查询界面最近非常慢,界面的响应时间在6-8秒钟时间,甚至更长。检查发现问题出现在数据库端,查询比较耗时。该界面涉及到多个表中的数据,基本表有150万数据,关联子表的最多的一个700多万数据,其它表数据也在几十万到几百万之间。其实按这样的数据级别查询响应时间应该在毫秒级内,不应该有这么长时间。那么接下来就该进行问题排查了。

由于这个这界面的功能主要是信息检索,查询比较复杂,太多的条件组合,使用存储过程太多的局限性,因此查询使用的是动态拼接的sql语句。查询方式是最常用的1、获取数据总数2、数据分页。直接上代码(部分条件)。

select numb=count(distinct t1.tlntcode)
from  ZWOMMAINM0 t1 inner join ZWOMMLIBM0 t2 on t1.tlntcode=t2.tlntcode
	join ZWOMEXPRM0 cp on t1.tlntcode=cp.tlntcode
	join ZWOMILBSM0 i on i.tlntcode=t1.tlntcode
	join ZWOMILBSM0 p on p.tlntcode=i.tlntcode
	join ZWOMILBSM0 l on l.tlntcode=i.tlntcode
where isnull(t2.deletefg,‘0‘)=‘0‘  and cp.companyn like ‘%IBM%‘  and cp.sequence=0
	and i. mlbscode in(‘i0100‘,‘i0101‘,‘i0102‘,‘i0103‘,‘i0104‘,‘i0105‘,‘i0106‘) and i.locatype=‘10‘
	and p.mlbscode in(‘p0100‘,‘p0102‘,‘p0104‘,‘p0200‘,‘p0600‘) and p.locatype=‘10‘
	and l.mlbscode in(‘l030‘) and l.locatype=‘10‘
查看执行时间

根据提示得知,整个查询耗时花费在了分析和编译为4秒,执行为0.7秒。查询语句没有发现什么问题,那么问题出现在了编译,如果让SQL语句执行原有的查询计划,那么跳过编译,只需0.7秒就能得到结果。那么如何做到预编译,或者使用现有的执行计划?
        SQL Server有一优化算法,它保存了以往执行sql语句的执行计划,所有的执行计划都会在sys.syscacheobjects表中存储,如果当前sql语句在缓存表中能匹配到,那么它讲执行匹配到的执行计划,而不再进行编译。 那么解决方法我们首先想到的是存储过程(这就是我们面试或者理论中经常说的存储过程有预编译,平时也就是说说,不存在什么深刻印象),是的它能实现预编译,但是由于条件限制,查询太过复杂,如果把没有使用到查询条件的表都关联在一起反而影响到性能。排除存储过程,我们另外想到的就是
EXEC SP_EXECUTESQL @Sql, N‘@p NVARCHAR(50)‘,@p
为什么SP_EXECUTESQL 能复用查询计划而普通sql语句不能,我们从缓存表中查看就能发现问题

select bucketid,cacheobjtype,objtype,objid,sql,sqlbytes from sys.syscacheobjects where cacheobjtype=‘Compiled Plan‘

表中sql字段就是历史执行计划的查询语句,如果sql匹配成功那么就会执行匹配的执行计划。普通sql语句很难与之匹配,因为它不但包含了结构还包含了参数,复用率很低。而SP_EXECUTESQL 执行时只存储结构,参数不存储,因此复用率很高。找到了解决方法,那么直接行动。

declare @Sql nvarchar(max),@cpny nvarchar(50)=‘IBM‘
declare @i varchar(1000)=‘i0100,i0101,i0102,i0103,i0104,i0105,i0106,i0107,i0109‘,
@p varchar(1000)=‘p0100,p0101,p0102,p0103,p0104,p0107,p0201‘,@l varchar(1000)=‘l030‘
set @Sql=‘select value into #i from f_CSplit(@i,‘‘,‘‘)
select value into #p from f_CSplit(@p,‘‘,‘‘)
select value into #l from f_CSplit(@l,‘‘,‘‘)
select numb=count(distinct t1.tlntcode)
from  ZWOMMAINM0 t1 inner join ZWOMMLIBM0 t2 on t1.tlntcode=t2.tlntcode
join ZWOMILBSM0 i on i.tlntcode=t1.tlntcode join ZWOMILBSM0 p on p.tlntcode=t1.tlntcode
join ZWOMILBSM0 l on l.tlntcode=t1.tlntcode join ZWOMEXPRM0 cp on t1.tlntcode=cp.tlntcode
where isnull(t2.deletefg,‘‘0‘‘)=‘‘0‘‘
and i.mlbscode in(select value from #i) and i.locatype=‘‘10‘‘ -- and i.mlbstype=‘‘20‘‘
and p.mlbscode in(select value from #p) and p.locatype=‘‘10‘‘ --and p.mlbstype=‘‘40‘‘
and l.mlbscode in(select value from #l) and l.locatype=‘‘10‘‘-- and l.mlbstype=‘‘50‘‘
and cp.companyn like ‘‘%‘‘[email protected]+‘‘%‘‘  and cp.sequence=0 ‘

EXEC SP_EXECUTESQL @Sql, N‘@cpny NVARCHAR(50),@i NVARCHAR(50),@p NVARCHAR(50),@l NVARCHAR(50)‘,
@cpny,@i,@p,@l 

总耗时0.5秒,无论参数如何改变基本都在0.5秒波动,基本符合了我们的要求,如果想进一步优化还可以进行表分区等其他优化方案。
当我们发现查询速度慢时,有可能是分析和编译占用了你的太多时间,因此简化你的查询语句、复用执行计划能帮你走出困境。

时间: 2024-10-06 23:45:50

Sql Server中百万级数据的查询优化的相关文章

十步优化SQL Server中的数据访问(转载)

原文地址:http://tech.it168.com/a2009/1125/814/000000814758.shtml 故事开篇:你和你的团队经过不懈努力,终于使网站成功上线,刚开始时,注册用户较少,网站性能表现不错,但随着注册用户的增多,访问速度开始变慢,一些用户开始发来邮件表示抗议,事情变得越来越糟,为了留住用户,你开始着手调查访问变慢的原因. 经过紧张的调查,你发现问题出在数据库上,当应用程序尝试访问/更新数据时,数据库执行得相当慢,再次深入调查数据库后,你发现数据库表增长得很大,有些表

SQL Server中的SQL语句优化与效率

很多人不知道SQL语句在SQL SERVER中是如何执行的,他们担心自己所写的SQL语句会被SQL SERVER误解.比如: select * from table1 where name='zhangsan' and tID > 10000 和执行: select * from table1 where tID > 10000 and name='zhangsan' 一些人不知道以上两条语句的执行效率是否一样,因为如果简单的从语句先后上看,这两个语句的确是不一样,如果tID是一个聚合索引,那

SQL Server中的执行引擎入门

简介 当查询优化器(Query Optimizer)将T-SQL语句解析后并从执行计划中选择最低消耗的执行计划后,具体的执行就会交由执行引擎(Execution Engine)来进行执行.本文旨在分类讲述执行计划中每一种操作的相关信息. 数据访问操作 首先最基本的操作就是访问数据.这既可以通过直接访问表,也可以通过访问索引来进行.表内数据的组织方式分为堆(Heap)和B树,其中表中没有建立聚集索引时数据是通过堆进行组织的,这个是无序的,表中建立聚集索引后和非聚集索引的数据都是以B树方式进行组织,

SQL Server中TOP子句可能导致的问题以及解决办法

原文:SQL Server中TOP子句可能导致的问题以及解决办法 简介      在SQL Server中,针对复杂查询使用TOP子句可能会出现对性能的影响,这种影响可能是好的影响,也可能是坏的影响,针对不同的情况有不同的可能性.      关系数据库中SQL语句只是一个抽象的概念,不包含任何逻辑.很多元数据都会影响执行计划的生成,SQL语句本身并不作为生成执行计划所参考的元数据(提示除外),但TOP关键字却是直接影响执行计划的一个关键字,因此在某些情况下使用TOP会导致性能受到影响,下面我们来

SQL Server 中WITH (NOLOCK)浅析

原文:SQL Server 中WITH (NOLOCK)浅析 概念介绍 开发人员喜欢在SQL脚本中使用WITH(NOLOCK), WITH(NOLOCK)其实是表提示(table_hint)中的一种.它等同于 READUNCOMMITTED . 具体的功能作用如下所示(摘自MSDN): 1: 指定允许脏读.不发布共享锁来阻止其他事务修改当前事务读取的数据,其他事务设置的排他锁不会阻碍当前事务读取锁定数据.允许脏读可能产生较多的并发操作,但其代价是读取以后会被其他事务回滚的数据修改.这可能会使您的

为什么SQL语句Where 1=1 and在SQL Server中不影响性能

    最近一个朋友和我探讨关于Where 1=1 and这种形式的语句会不会影响性能.最后结论是不影响.     虽然结论正确,但对问题的认识却远远没有解决问题的根本.实际上在T-SQL语句的书写过程中经常犯得错误就是得出一个很窄的结论,然后教条式的奉若圣经,对于T-SQL领域来说,在网上经常可以看到所谓的优化守则,随便在网上搜了一些摘录如下: 不要有超过5个以上的表连接(JOIN) 考虑使用临时表或表变量存放中间结果 少用子查询 视图嵌套不要过深,一般视图嵌套不要超过2个为宜. 对出现在wh

SQL Server中关于跟踪(Trace)那点事

前言 一提到跟踪俩字,很多人想到警匪片中的场景,同样在我们的SQL Server数据库中“跟踪”也是无处不在的,如果我们利用好了跟踪技巧,就可以针对某些特定的场景做定向分析,找出充足的证据来破案. 简单的举几个应用场景: 在线生产库为何突然宕机?数百张数据表为何不翼而飞?刚打好补丁的系统为何屡遭黑手?新添加的信息表为何频频丢失?某张表字段的突然更改,究竟为何人所为?这些个匿名的访问背后,究竟是人是鬼?突然增加的增量数据,究竟是对是错?数百兆的日志爆炸式的增长背后又隐藏着什么?这一且的背后,是应用

SQL Server中使用Check约束提升性能

在SQL Server中,SQL语句的执行是依赖查询优化器生成的执行计划,而执行计划的好坏直接关乎执行性能. 在查询优化器生成执行计划过程中,需要参考元数据来尽可能生成高效的执行计划,因此元数据越多,则执行计划更可能会高效.所谓需要参考的元数据主要包括:索引.表结构.统计信息等,但还有一些不是很被注意的元数据,其中包括本文阐述的Check约束. 查询优化器在生成执行计划之前有一个阶段叫做代数树优化,比如说下面这个简单查询: 图1.简单查询 查询优化器意识到1=2这个条件是永远不相等的,因此不需要

SQL Server中关于基数估计如何计算预估行数的一些探讨

关于SQL Server 2014中的基数估计,官方文档Optimizing Your Query Plans with the SQL Server 2014 Cardinality Estimator里有大量细节介绍,但是全部是英文,估计也没有几个人仔细阅读.那么SQL Server 2014中基数估计的预估行数到底是怎么计算的呢? 有哪一些规律呢?我们下面通过一些例子来初略了解一下,下面测试案例仅供参考,如有不足或肤浅的地方,敬请指教! 下面实验测试的环境主要为SQL Server 201