Canny边缘检测算法以Canny的名字命名,其中Canny的目标是找到一个最优的边缘检测算法,其有三种衡量标准:
- 低错误率:标识出尽可能多的实际边缘,同时尽可能的减少噪声产生的误报
- 高定位性:标识出的边缘要与图像中的图像中的实际边缘尽可能接近
- 最小响应:图像中的边缘只能标识一次,并且可能存在的图像噪声不应标识为边缘
//Canny int g_nCannySize; int g_nCannyThresHoldValue; int g_nSobelValue; Mat g_srcImage,g_dstImage,g_grayImage,g_edgeImage; void on_ChangeThresHoldAndCannySize(int,void*) { if(g_nSobelValue>2 && g_nSobelValue%2==1) { blur(g_grayImage,g_edgeImage,Size(g_nCannySize,g_nCannySize)); Canny(g_edgeImage,g_edgeImage,1,g_nCannyThresHoldValue,3); g_dstImage=Scalar::all(0); g_srcImage.copyTo(g_dstImage,g_edgeImage); imshow("Canny图",g_dstImage); } } void Test_Canny() { g_srcImage=imread("D:\\OpenCV Projects\\OpenCV_Test_Image\\7.jpg"); g_dstImage.create(g_srcImage.size(),g_srcImage.type()); cvtColor(g_srcImage,g_grayImage,COLOR_BGR2GRAY);//得到灰度图 namedWindow("原图"); namedWindow("Canny图"); g_nCannySize=1; g_nCannyThresHoldValue=3; //g_nSobelValue=3; createTrackbar("size","Canny图",&g_nCannySize,30,on_ChangeThresHoldAndCannySize); //createTrackbar("sobel","Canny图",&g_nSobelValue,9,on_ChangeThresHoldAndCannySize); createTrackbar("value","Canny图",&g_nCannyThresHoldValue,80,on_ChangeThresHoldAndCannySize); on_ChangeThresHoldAndCannySize(g_nCannySize,0); on_ChangeThresHoldAndCannySize(g_nCannyThresHoldValue,0); //on_ChangeThresHoldAndCannySize(g_nSobelValue,0); imshow("原图",g_srcImage); }
时间: 2024-10-12 09:23:34