Linux内核中获取时间并转换成本地时区时间

下面的函数get_time_str实现了在内核中获取本地时间的功能。

他首先获取utc时间,然后根据系统的时区timezone转换成本地时间,

最后将时间以“2014-11-02 21:14:08”的字符串的形式输出到output缓冲区中。

函数的返回值,是输出的字符串的长度。

#include <linux/time.h>

#include <linux/timex.h>

#include <linux/rtc.h>

int get_time_str(char *output)

{

struct timex  txc;

struct rtc_time tm;

/* 获取当前的UTC时间 */

do_gettimeofday(&(txc.time));

/* 把UTC时间调整为本地时间 */

txc.time.tv_sec -= sys_tz.tz_minuteswest * 60;

/* 算出时间中的年月日等数值到tm中 */

rtc_time_to_tm(txc.time.tv_sec,&tm);

return sprintf(output, "%04d-%02d-%02d %02d:%02d:%02d"

,tm.tm_year+1900

,tm.tm_mon+1

,tm.tm_mday

,tm.tm_hour

,tm.tm_min

,tm.tm_sec);

}

事实上,系统调用gettimeofday就是由sys_gettimeofday()实现的。

而sys_gettimeofday()也就是简单的将调用do_gettimeofday()得到的时间值拷贝给用户态。

其代码如下:

asmlinkage long sys_gettimeofday(struct timeval __user *tv, struct timezone __user *tz)

{

if (likely(tv != NULL)) {

struct timeval ktv;

do_gettimeofday(&ktv);

if (copy_to_user(tv, &ktv, sizeof(ktv)))

return -EFAULT;

}

if (unlikely(tz != NULL)) {

if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))

return -EFAULT;

}

return 0;

}

时间: 2024-07-31 00:55:05

Linux内核中获取时间并转换成本地时区时间的相关文章

从Linux内核中获取真随机数【转】

转自:http://www.cnblogs.com/bigship/archive/2010/04/04/1704228.html 内核随机数产生器 Linux内核实现了一个随机数产生器,从理论上说这个随机数产生器产生的是真随机数.与标准C库中的rand(),srand()产生的伪随机数不同,尽管伪随机数带有一定的随机特征,但这些数字序列并非统计意义上的随机数.也就是说它们是可重现的--只要每次使用相同的seed值,就能得到相同的伪随机数列.通常通过使用time()的返回值来改变seed,以此得

Linux内核中的jiffies及其作用介绍及jiffies等相关函数详解

在LINUX的时钟中断中涉及至二个全局变量一个是xtime,它是timeval数据结构变量,另一个则是jiffies,首先看timeval结构struct timeval{time_t tv_sec; /***second***/susecond_t tv_usec;/***microsecond***/}到底microsecond是毫秒还是微秒?? 1秒=1000毫秒(3个零),1秒=1000 000微秒(6个零),1秒=1000 000 000纳秒(9个零),1秒=1000 000 000

(笔记)Linux内核中内存相关的操作函数

linux内核中内存相关的操作函数 1.kmalloc()/kfree() static __always_inline void *kmalloc(size_t size, gfp_t flags) 内核空间申请指定大小的内存区域,返回内核空间虚拟地址.在函数实现中,如果申请的内存空间较大的话,会从buddy系统申请若干内存页面,如果申请的内存空间大小较小的话,会从slab系统中申请内存空间.有关buddy和slab,请参见<linux内核之内存管理.doc> gfp_t flags 的选项

大话Linux内核中锁机制之完成量、互斥量

大话Linux内核中锁机制之完成量.互斥量 在上一篇博文中笔者分析了关于信号量.读写信号量的使用及源码实现,接下来本篇博文将讨论有关完成量和互斥量的使用和一些经典问题. 八.完成量 下面讨论完成量的内容,首先需明确完成量表示为一个执行单元需要等待另一个执行单元完成某事后方可执行,它是一种轻量级机制.事实上,它即是为了完成进程间的同步而设计的,故而仅仅提供了代替同步信号量的一种解决方法,初值被初始化为0.它在include\linux\completion.h定义. 如图8.1所示,对于执行单元A

大话Linux内核中锁机制之信号量、读写信号量

大话Linux内核中锁机制之信号量.读写信号量 在上一篇博文中笔者分析了关于内存屏障.读写自旋锁以及顺序锁的相关内容,本篇博文将着重讨论有关信号量.读写信号量的内容. 六.信号量 关于信号量的内容,实际上它是与自旋锁类似的概念,只有得到信号量的进程才能执行临界区的代码:不同的是获取不到信号量时,进程不会原地打转而是进入休眠等待状态.它的定义是include\linux\semaphore.h文件中,结构体如图6.1所示.其中的count变量是计数作用,通过使用lock变量实现对count变量的保

Linux内核中常见内存分配函数

1.原理说明 Linux内核中采用了一种同时适用于32位和64位系统的内存分页模型,对于32位系统来说,两级页表足够用了,而在x86_64系统中,用到了四级页表,如图2-1所示.四级页表分别为: l   页全局目录(Page Global Directory) l   页上级目录(Page Upper Directory) l   页中间目录(Page Middle Directory) l   页表(Page Table) 页全局目录包含若干页上级目录的地址,页上级目录又依次包含若干页中间目录

Linux 内核中的 GCC 特性

转载:http://www.ibm.com/developerworks/cn/linux/l-gcc-hacks/?S_TACT=105AGX52&S_CMP=tec-csdn Linux 内核中的 GCC 特性 了解用于 C 语言的 GCC 扩展 Linux? 内核使用 GNU Compiler Collection (GCC) 套件的几个特殊功能.这些功能包括提供快捷方式和简化以及向编译器提供优化提示等等.了解这些特殊的 GCC 特性,学习如何在 Linux 内核中使用它们. 0 评论:

Linux内核中常见内存分配函数zz

https://blog.csdn.net/wzhwho/article/details/4996510 1.      原理说明 Linux内核中采用了一种同时适用于32位和64位系统的内存分页模型,对于32位系统来说,两级页表足够用了,而在x86_64系统中,用到了四级页表,如图2-1所示.四级页表分别为: l         页全局目录(Page Global Directory) l         页上级目录(Page Upper Directory) l         页中间目录(

Linux内核中的软中断、tasklet和工作队列详解

[TOC] 本文基于Linux2.6.32内核版本. 引言 软中断.tasklet和工作队列并不是Linux内核中一直存在的机制,而是由更早版本的内核中的"下半部"(bottom half)演变而来.下半部的机制实际上包括五种,但2.6版本的内核中,下半部和任务队列的函数都消失了,只剩下了前三者. 介绍这三种下半部实现之前,有必要说一下上半部与下半部的区别. 上半部指的是中断处理程序,下半部则指的是一些虽然与中断有相关性但是可以延后执行的任务.举个例子:在网络传输中,网卡接收到数据包这