博弈论(转)

有一种很有意思的游戏,就是有物体若干堆,可以是火柴棍或是围棋子等等均可。两个
人轮流从堆中取物体若干,规定最后取光物体者取胜。这是我国民间很古老的一个游戏
,别看这游戏极其简单,却蕴含着深刻的数学原理。下面我们来分析一下要如何才能够
取胜。

(一)巴什博奕(Bash
Game):只有一堆n个物品,两个人轮流从这堆物品中取物,规
定每次至少取一个,最多取m个。最后取光者得胜。

显然,如果n=m+1,那么由于一次最多只能取m个,所以,无论先取者拿走多少个,
后取者都能够一次拿走剩余的物品,后者取胜。因此我们发现了如何取胜的法则:如果
n=(m+1)r+s,(r为任意自然数,s≤m),那么先取者要拿走s个物品,如果后取者拿走
k(≤m)个,那么先取者再拿走m+1-k个,结果剩下(m+1)(r-1)个,以后保持这样的
取法,那么先取者肯定获胜。总之,要保持给对手留下(m+1)的倍数,就能最后获胜。
 
 
这个游戏还可以有一种变相的玩法:两个人轮流报数,每次至少报一个,最多报十
个,谁能报到100者胜。
(二)威佐夫博奕(Wythoff
Game):有两堆各若干个物品,两个人轮流从某一堆或同
时从两堆中取同样多的物品,规定每次至少取一个,多者不限,最后取光者得胜。

 
  这种情况下是颇为复杂的。我们用(ak,bk)(ak ≤ bk
,k=0,1,2,…,n)表示
两堆物品的数量并称其为局势,如果甲面对(0,0),那么甲已经输了,这种局势我们
称为奇异局势。前几个奇异局势是:(0,0)、(1,2)、(3,5)、(4,7)、(6,
10)、(8,13)、(9,15)、(11,18)、(12,20)。

可以看出,a0=b0=0,ak是未在前面出现过的最小自然数,而 bk= ak +
k,奇异局势有
如下三条性质:

1。任何自然数都包含在一个且仅有一个奇异局势中。
   
由于ak是未在前面出现过的最小自然数,所以有ak > ak-1 ,而 bk= ak + k > ak
-1 + k-1 = bk-1 >
ak-1 。所以性质1。成立。
    2。任意操作都可将奇异局势变为非奇异局势。
   
事实上,若只改变奇异局势(ak,bk)的某一个分量,那么另一个分量不可能在其
他奇异局势中,所以必然是非奇异局势。如果使(ak,bk)的两个分量同时减少,则由
于其差不变,且不可能是其他奇异局势的差,因此也是非奇异局势。
 
  3。采用适当的方法,可以将非奇异局势变为奇异局势。

假设面对的局势是(a,b),若 b = a,则同时从两堆中取走 a
个物体,就变为了
奇异局势(0,0);如果a = ak ,b > bk,那么,取走b  – bk个物体,即变为奇异局
势;如果 a
= ak ,  b < bk ,则同时从两堆中拿走 ak – ab – ak个物体,变为奇异局
势( ab – ak , ab – ak+
b – ak);如果a > ak ,b= ak + k,则从第一堆中拿走多余
的数量a – ak 即可;如果a < ak ,b= ak +
k,分两种情况,第一种,a=aj (j < k)
,从第二堆里面拿走 b – bj 即可;第二种,a=bj (j < k),从第二堆里面拿走
b – a
j 即可。

从如上性质可知,两个人如果都采用正确操作,那么面对非奇异局势,先拿者必胜
;反之,则后拿者取胜。

那么任给一个局势(a,b),怎样判断它是不是奇异局势呢?我们有如下公式:

ak =[k(1+√5)/2],bk= ak + k  (k=0,1,2,…,n
方括号表示取整函数)

奇妙的是其中出现了黄金分割数(1+√5)/2 =
1。618…,因此,由ak,bk组成的矩形近
似为黄金矩形,由于2/(1+√5)=(√5-1)/2,可以先求出j=[a(√5-1)/2],若a=[
j(1+√5)/2],那么a
= aj,bj = aj + j,若不等于,那么a = aj+1,bj+1 = aj+1
+ j +
1,若都不是,那么就不是奇异局势。然后再按照上述法则进行,一定会遇到奇异
局势。

(三)尼姆博奕(Nimm
Game):有三堆各若干个物品,两个人轮流从某一堆取任意多的
物品,规定每次至少取一个,多者不限,最后取光者得胜。

这种情况最有意思,它与二进制有密切关系,我们用(a,b,c)表示某种局势,首
先(0,0,0)显然是奇异局势,无论谁面对奇异局势,都必然失败。第二种奇异局势是
(0,n,n),只要与对手拿走一样多的物品,最后都将导致(0,0,0)。仔细分析一
下,(1,2,3)也是奇异局势,无论对手如何拿,接下来都可以变为(0,n,n)的情
形。

计算机算法里面有一种叫做按位模2加,也叫做异或的运算,我们用符号(+)表示
这种运算。这种运算和一般加法不同的一点是1+1=0。先看(1,2,3)的按位模2加的结
果:

1 =二进制01
2 =二进制10
3 =二进制11 (+)
———————
0 =二进制00
(注意不进位)

对于奇异局势(0,n,n)也一样,结果也是0。

任何奇异局势(a,b,c)都有a(+)b(+)c =0。

如果我们面对的是一个非奇异局势(a,b,c),要如何变为奇异局势呢?假设 a < b
< c,我们只要将 c 变为
a(+)b,即可,因为有如下的运算结果: a(+)b(+)(a(+)
b)=(a(+)a)(+)(b(+)b)=0(+)0=0。要将c
变为a(+)b,只要从 c中减去 c-(
a(+)b)即可。

   
例1。(14,21,39),14(+)21=27,39-27=12,所以从39中拿走12个物体即可达
到奇异局势(14,21,27)。

例2。(55,81,121),55(+)81=102,121-102=19,所以从121中拿走19个物品
就形成了奇异局势(55,81,102)。

例3。(29,45,58),29(+)45=48,58-48=10,从58中拿走10个,变为(29,4
5,48)。

例4。我们来实际进行一盘比赛看看:
       
甲:(7,8,9)->(1,8,9)奇异局势
       
乙:(1,8,9)->(1,8,4)
       
甲:(1,8,4)->(1,5,4)奇异局势
       
乙:(1,5,4)->(1,4,4)
       
甲:(1,4,4)->(0,4,4)奇异局势
       
乙:(0,4,4)->(0,4,2)
       
甲:(0.4,2)->(0,2,2)奇异局势
       
乙:(0,2,2)->(0,2,1)
       
甲:(0,2,1)->(0,1,1)奇异局势
       
乙:(0,1,1)->(0,1,0)
       
甲:(0,1,0)->(0,0,0)奇异局势
        甲胜。

取火柴的游戏
题目1:今有若干堆火柴,两人依次从中拿取,规定每次只能从一堆中取若干根, 
可将一堆全取走,但不可不取,最后取完者为胜,求必胜的方法。 
题目2:今有若干堆火柴,两人依次从中拿取,规定每次只能从一堆中取若干根, 
可将一堆全取走,但不可不取,最后取完者为负,求必胜的方法。
嘿嘿,这个游戏我早就见识过了。小时候用珠算玩这个游戏:第一档拨一个,第二档拨两个,依次直到第五档拨五个。然后两个人就轮流再把棋子拨下来,谁要是最后一个拨谁就赢。有一次暑假看见两个小孩子在玩这个游戏,我就在想有没有一个定论呢。下面就来试着证明一下吧
先解决第一个问题吧。
定义:若所有火柴数异或为0,则该状态被称为利他态,用字母T表示;否则, 
为利己态,用S表示。
[定理1]:对于任何一个S态,总能从一堆火柴中取出若干个使之成为T态。
证明:
 
  若有n堆火柴,每堆火柴有A(i)根火柴数,那么既然现在处于S态,
      c = A(1) xor
A(2) xor … xor A(n) > 0;
   
把c表示成二进制,记它的二进制数的最高位为第p位,则必然存在一个A(t),它二进制的第p位也是1。(否则,若所有的A(i)的第p位都是0,这与c的第p位就也为0矛盾)。
 
  那么我们把x = A(t) xor c,则得到x <
A(t).这是因为既然A(t)的第p位与c的第p位同为1,那么x的第p位变为0,而高于p的位并没有改变。所以x < A(t).而
 
  A(1) xor A(2) xor … xor x xor … xor A(n)
  = A(1) xor A(2) xor …
xor A(t) xor c xor … xor A(n)
  = A(1) xor A(2) xor… xor A(n) xor A(1)
xor A(2) xor … xor A(n)
  = 0
这就是说从A(t)堆中取出 A(t) – x
根火柴后状态就会从S态变为T态。证毕
[定理2]:T态,取任何一堆的若干根,都将成为S态。
证明:用反证法试试。
   
  若
      c = A(1) xor A(2) xor … xor A(i) xor … xor A(n)
= 0;
      c’ = A(1) xor A(2) xor … xor A(i’) xor c xor … xor
A(n) = 0;
      则有
c xor c’ = A(1) xor A(2) xor … xor A(i)
xor … xor A(n) xor A(1) xor A(2) xor … xor A(i’) xor c xor … xor A(n) = A(i) xor
A(i’) =0
      进而推出A(i) = A(i’),这与已知矛盾。所以命题得证。
[定理
3]:S态,只要方法正确,必赢。 
 
最终胜利即由S态转变为T态,任何一个S态,只要把它变为T态,(由定理1,可以把它变成T态。)对方只能把T态转变为S态(定理2)。这样,所有S态向T态的转变都可以有己方控制,对方只能被动地实现由T态转变为S态。故S态必赢。
[定理4]:T态,只要对方法正确,必败。 
 
由定理3易得。 
接着来解决第二个问题。
定义:若一堆中仅有1根火柴,则被称为孤单堆。若大于1根,则称为充裕堆。
定义:T态中,若充裕堆的堆数大于等于2,则称为完全利他态,用T2表示;若充裕堆的堆数等于0,则称为部分利他态,用T0表示。
 
孤单堆的根数异或只会影响二进制的最后一位,但充裕堆会影响高位(非最后一位)。一个充裕堆,高位必有一位不为0,则所有根数异或不为0。故不会是T态。
[定理5]:S0态,即仅有奇数个孤单堆,必败。T0态必胜。 
证明:
S0态,其实就是每次只能取一根。每次第奇数根都由己取,第偶数根都由对 
方取,所以最后一根必己取。败。同理, 
T0态必胜#
[定理6]:S1态,只要方法正确,必胜。 
证明:
若此时孤单堆堆数为奇数,把充裕堆取完;否则,取成一根。这样,就变成奇数个孤单堆,由对方取。由定理5,对方必输。己必胜。 

[定理7]:S2态不可转一次变为T0态。 
证明:
充裕堆数不可能一次由2变为0。得证。 
#

[定理8]:S2态可一次转变为T2态。 
证明:
由定理1,S态可转变为T态,态可一次转变为T态,又由定理6,S2态不可转一次变为T0态,所以转变的T态为T2态。 

[定理9]:T2态,只能转变为S2态或S1态。 
证明:
由定理2,T态必然变为S态。由于充裕堆数不可能一次由2变为0,所以此时的S态不可能为S0态。命题得证。 
[定理10]:S2态,只要方法正确,必胜. 
证明:
方法如下: 
 
    1)  S2态,就把它变为T2态。(由定理8) 
     
2)  对方只能T2转变成S2态或S1态(定理9)
    若转变为S2, 
转向1) 
    若转变为S1, 
这己必胜。(定理5) 
[定理11]:T2态必输。 
证明:同10。 
综上所述,必输态有: 
T2,S0 
          必胜态:   
S2,S1,T0. 
两题比较: 
第一题的全过程其实如下: 
S2->T2->S2->T2-> 
…… 
->T2->S1->T0->S0->T0->……->S0->T0(全0) 
第二题的全过程其实如下: 
S2->T2->S2->T2-> 
…… 
->T2->S1->S0->T0->S0->……->S0->T0(全0) 
下划线表示胜利一方的取法。 
是否发现了他们的惊人相似之处。 
我们不难发现(见加黑部分),S1态可以转变为S0态(第二题做法),也可以转变为 
T0(第一题做法)。哪一方控制了S1态,他即可以有办法使自己得到最后一根(转变为 
T0),也可以使对方得到最后一根(转变为S0)。 
 
所以,抢夺S1是制胜的关键! 
 
为此,始终把T2态让给对方,将使对方处于被动状态,他早晚将把状态变为S1.

推荐HDOJ题目
http://acm.hdu.edu.cn/showproblem.php?pid=1907
http://acm.hdu.edu.cn/showproblem.php?pid=2509
看完上面的结论,就能顺利解决上面2道了

S-Nim
http://acm.hdu.edu.cn/showproblem.php?pid=1536
http://acm.hdu.edu.cn/showproblem.php?pid=1944

博弈算法入门小节 1536 1517
1907
小子最近迷途于博弈之中。。。感触颇深。
为了让大家能够在学习博弈的时候少走弯路,最重要的也是为了加深自己的影响,温故而知新,特发此贴与大家共勉。
学博弈先从概念开始:
特别推荐LCY老师的课件:博弈入门。
下载地址:http://acm.hdu.edu.cn/forum/read.php?tid=6875
这个课件个人认为从博弈的基本思想,一直到解博弈的中心算法做了很好的诠释。但是特别要注意的是。课件后面一部分英语写的讲义是重中之重。小子英语很弱,在这困扰很久。现在为大家大概介绍一下。
主要是后继点和SG值的问题:
SG值:一个点的SG值就是一个不等于它的后继点的SG的且大于等于零的最小整数。
后继点:也就是按照题目要求的走法(比如取石子可以取的数量,方法)能够走一步达到的那个点。
具体的有关SG值是怎么运用的希望大家自己多想想。
课件后面有一个1536的代码。可以放在后面做做
看到这里推荐大家做几道题:1846(最简单的博弈水题)
1847(求SG值)

有了上面的知识接下来我们来看看组合博弈(n堆石子)
推荐大家看个资料:
博弈-取石子游戏(推荐等级五星级)
http://acm.hdu.edu.cn/forum/read.php?fid=20&tid=5748
http://hi.baidu.com/netnode/blog/item/30932c2edc7384514fc226ea.html
这里提出了一个奇异状态的问题。看了这篇文章你会发现异或运算在博弈中使用的妙处。当然这里指出的只是组合博弈中一种特殊情况。
王道还是对SG值的求解,但是知道这么一种思路无疑对思维的广度和深度扩展是很有帮助的。
ZZ博弈
http://acm.hdu.edu.cn/forum/read.php?fid=9&tid=10617
这里介绍了组和博弈的两种大的类型,一种是最后取的是N状态一种是最后取的是P状态,两个状态的解题方法能看懂很有帮助。当然,能够把推导过程理解,吃透无疑是大牛级的做法~小子也佩服的紧~ 
 
   
1536题推荐做做这题,这题前面提醒大家是一个求SG值的题目,题目前面是对异或运算运用在组合博弈问题中的很好的解释。当然题目本身是有所不同的。因为在这里面对取法有所要求。那么这样就回归到了解决博弈问题的王道算法——求SG值上。
 
  有关运用求SG值的博弈题目有:
1850(也可基于奇异状态异或)
1848(中和的大斐波那契数列的典型求SG值题)
1517(个人认为有点猥琐的题目。。。。在此题上困扰很久。当然搞出来很开心。小子是用比较规矩的求SG值的方法求出来的,但是论坛有人对其推出来了规律,这里佩服一下,大家可以学习一下)
1079(更猥琐的题目,对新手要求较高,因为按传统方法需要比较细致的模拟加对边角状态的考虑,同样有人推出来了公式)
当你全部看完以上的东西。做完以上的题目的话。。。小子恭喜你~你博弈入门了~~~~
 
  这里小子告诉大家。博弈很强大。学习要耐心~谢谢
Current System Time : 2008-12-11
19:16:03

ACM课作业:
1001 Brave Game
1002 Good Luck in CET-4
Everybody!
1003 Fibonacci again and again
1004 Rabbit and Grass
1005
Being a Good Boy in Spring Festival
1006 Public Sale 
1007
悼念512汶川大地震遇难同胞——选拔志愿者 
1008 kiki’s game 
1009 Calendar
Game 
1010 A Multiplication Game 
1011 Digital
Deletions 
1012 S-Nim
http://acm.hdu.edu.cn/forum/read.php?tid=11339&fpage=0&toread=&page=1

博弈论(转),布布扣,bubuko.com

时间: 2024-12-19 07:46:16

博弈论(转)的相关文章

hdu 1536 S-Nim 博弈论,,求出SG&#39;函数就可以解决

S-Nim Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 4975    Accepted Submission(s): 2141 Problem Description Arthur and his sister Caroll have been playing a game called Nim for some time now

UVA 10561 Treblecross(博弈论)

题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=32209 [思路] 博弈论. 根据X分布划分禁区,每个可以放置的块为单独一个游戏.按长度定义状态,构造sg函数.依次试验每一种放法. [代码] 1 #include<cstdio> 2 #include<vector> 3 #include<cstring> 4 #include<algorithm> 5 using names

博弈论的学习之始

今天看了耶鲁大学关于<博弈论>的公开课视频.于是想记录下关于博弈论的学习经历.最近赶上期末,事情超多,唉!不定期观看并记录吧! 视频中没有给出博弈论的具体定义,就不记录了吧!英文名Game Theory. 教授推荐课程书籍:杜塔 <策略与博弈>(课程基础书籍).乔治·沃森<策略>(教授说偏难!).<战略思想>(没看到具体谁的,教授说用来催眠不错!) 第一节课主要讲了博弈的几个原则. 1.不要选严格劣势策略: 2.理性选择造成次优选择: 3.要会换位思考: 4

hdu1856 Brave Game(博弈论)

应该是最基础的那种博弈论的题 (m+1)+多余 == n 如果没有多余,那么就后手赢了 #include<cstdio> int main() { int n; scanf("%d",&n); while(n--){ int x,p; scanf("%d%d",&x,&p); if(x%(p+1)==0 ) printf("second\n"); else printf("first\n")

Part.4【博弈论】

---恢复内容开始--- 不要问我为什么突然跳到Part.4,我懒得解释. 在蔡大神的论文+讲解和HZW的题库下,自己大概是明白什么是博弈论的皮毛了吧. 先说SG定理吧. 对于游戏中的状态,我们给每个状态定义一个必胜态和必败态.区别在于前者可以通过一次操作到达必败态,但后者无法做到(后者在一次操作后所能到达的状态全部都为必胜态) 接着引进SG函数,每个状态都有一个SG值,这个值由它所能到达的状态的SG值决定.(这里的所能到达的状态指的是经过一次操作能到达的状态,下同) SG值有以下性质: SG值

【博弈论】威佐夫博弈

威佐夫博弈     威佐夫博弈:有两堆石子,每次一个人可以两堆同时取相同数量的石子,也可以只取其中一堆的石子,最后谁取完谁获胜,请问先手还是后手胜? 对于学过一些博弈论基础的来说,我们需要找到那些能让先手必输的局势,那么由这些局势在规定范围内拓展的局势也是先手必输的局势(但在这里双方自由选取,不适用).我们可以得出一些局势使A必输:(0,0) (1,2) (3,5) (4,7) (6,10) (8,13) (9,15) (11,18) (12,20)……我们称这些局势为奇异局势 不难发现,如果我

HDU 5963 朋友 【博弈论】 (2016年中国大学生程序设计竞赛(合肥))

朋友 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Problem Description B君在围观一群男生和一群女生玩游戏,具体来说游戏是这样的:给出一棵n个节点的树,这棵树的每条边有一个权值,这个权值只可能是0或1. 在一局游戏开始时,会确定一个节点作为根.接下来从女生开始,双方轮流进行 操作.当一方操作时,他们需要先选择一个不为根的点,满足该点到其父亲的边权为1; 然

博弈论之入门小结

经过几天的学习和刷题,总算对博弈论的基础懂了一些,学习过程中参考了以下两位的总结: 博弈总结        博弈论题目列表 下面列出一些基础博弈的结论定理(证明过程略): (一)巴什博弈(Bash): 一个堆中有n个物体,两人轮流取,每次至少取1个,至多取m个,最后取完者胜. 取胜法则:令n=(m+1)*r+s  (s<=m,r为任意自然数),先取者要想取胜,则要求第一次取时必须取s个. (二)威佐夫博弈(Wythoff): 两个堆中各有若干个物品,两人轮流从某一堆或从两堆中同时取同样多个物品(

工作&ldquo;触雷&rdquo;经历与总结--记博弈论的应用

工作三年,职场受挫.一些值得说或者不值得说的事情,也懒得去记录.无奈,更多时无奈.内心的骄傲或者自负也不值得炫耀.天生骄傲,或者也只是自身内心的呐喊.毕竟,骄傲的人也不会说出来,搞的好像是有点似得. 书归正传.谈回事件的经过. 周末值班,又碰到了产线断网的停线Mail莫名其妙的丢了出来.加上不久前,数据库自动丢出的session高的Mail,或许有某种联系.叙述从如下几个角度展开. 第一,用户面. 没有常规的电话通知,单纯的停线Mail.看到后,第一反应时确认, 根据多次此种,注意是此种,已经明