博弈论2

HDU 1846 Brave Game (巴什博弈)

Description

十年前读大学的时候,中国每年都要从国外引进一些电影大片,其中有一部电影就叫《勇敢者的游戏》(英文名称:Zathura),一直到现在,我依然对于电影中的部分电脑特技印象深刻。 今天,大家选择上机考试,就是一种勇敢(brave)的选择;这个短学期,我们讲的是博弈(game)专题;所以,大家现在玩的也是“勇敢者的游戏”,这也是我命名这个题目的原因。 当然,除了“勇敢”,我还希望看到“诚信”,无论考试成绩如何,希望看到的都是一个真实的结果,我也相信大家一定能做到的~
各位勇敢者要玩的第一个游戏是什么呢?很简单,它是这样定义的: 1、  本游戏是一个二人游戏; 2、  有一堆石子一共有n个; 3、  两人轮流进行; 4、  每走一步可以取走1…m个石子; 5、  最先取光石子的一方为胜;
如果游戏的双方使用的都是最优策略,请输出哪个人能赢。

Input

输入数据首先包含一个正整数C(C<=100),表示有C组测试数据。 每组测试数据占一行,包含两个整数n和m(1<=n,m<=1000),n和m的含义见题目描述。

Output

如果先走的人能赢,请输出“first”,否则请输出“second”,每个实例的输出占一行。

Sample Input

2
23 2
4 3

Sample Output

first

second

(一)巴什博奕(Bash Game):只有一堆n个物品,两个人轮流从这堆物品中取物,规定每次至少取一个,最多取m个。最后取光者得胜。     显然,如果n=m+1,那么由于一次最多只能取m个,所以,无论先取者拿走多少个,后取者都能够一次拿走剩余的物品,后者取胜。因此我们发现了如何取胜的法则:如果n=(m+1)r+s,(r为任意自然数,s≤m),那么先取者要拿走s个物品,如果后取者拿走k(≤m)个,那么先取者再拿走m+1-k个,结果剩下(m+1)(r-1)个,以后保持这样的取法,那么先取者肯定获胜。总之,要保持给对手留下(m+1)的倍数,就能最后获胜。  这个游戏还可以有一种变相的玩法:两个人轮流报数,每次至少报一个,最多报十个,谁能报到100者胜。

其PN图也很好画,我理解N为后者必胜,P为后者必败。

 1 #include <iostream>
 2
 3 using namespace std;
 4
 5 int main()
 6 {
 7     int i,n,m;
 8     cin>>i;
 9     while(i--)
10     {
11         cin>>n>>m;
12         if(n%(m+1)!=0)
13         {
14             cout<<"first will win!"<<endl;
15         }
16         else
17         {
18             cout<<"second will win!"<<endl;
19         }
20     }
21     return 0;
22 }
时间: 2024-12-16 22:41:09

博弈论2的相关文章

hdu 1536 S-Nim 博弈论,,求出SG&#39;函数就可以解决

S-Nim Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 4975    Accepted Submission(s): 2141 Problem Description Arthur and his sister Caroll have been playing a game called Nim for some time now

UVA 10561 Treblecross(博弈论)

题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=32209 [思路] 博弈论. 根据X分布划分禁区,每个可以放置的块为单独一个游戏.按长度定义状态,构造sg函数.依次试验每一种放法. [代码] 1 #include<cstdio> 2 #include<vector> 3 #include<cstring> 4 #include<algorithm> 5 using names

博弈论的学习之始

今天看了耶鲁大学关于<博弈论>的公开课视频.于是想记录下关于博弈论的学习经历.最近赶上期末,事情超多,唉!不定期观看并记录吧! 视频中没有给出博弈论的具体定义,就不记录了吧!英文名Game Theory. 教授推荐课程书籍:杜塔 <策略与博弈>(课程基础书籍).乔治·沃森<策略>(教授说偏难!).<战略思想>(没看到具体谁的,教授说用来催眠不错!) 第一节课主要讲了博弈的几个原则. 1.不要选严格劣势策略: 2.理性选择造成次优选择: 3.要会换位思考: 4

hdu1856 Brave Game(博弈论)

应该是最基础的那种博弈论的题 (m+1)+多余 == n 如果没有多余,那么就后手赢了 #include<cstdio> int main() { int n; scanf("%d",&n); while(n--){ int x,p; scanf("%d%d",&x,&p); if(x%(p+1)==0 ) printf("second\n"); else printf("first\n")

Part.4【博弈论】

---恢复内容开始--- 不要问我为什么突然跳到Part.4,我懒得解释. 在蔡大神的论文+讲解和HZW的题库下,自己大概是明白什么是博弈论的皮毛了吧. 先说SG定理吧. 对于游戏中的状态,我们给每个状态定义一个必胜态和必败态.区别在于前者可以通过一次操作到达必败态,但后者无法做到(后者在一次操作后所能到达的状态全部都为必胜态) 接着引进SG函数,每个状态都有一个SG值,这个值由它所能到达的状态的SG值决定.(这里的所能到达的状态指的是经过一次操作能到达的状态,下同) SG值有以下性质: SG值

博弈论(转)

有一种很有意思的游戏,就是有物体若干堆,可以是火柴棍或是围棋子等等均可.两个人轮流从堆中取物体若干,规定最后取光物体者取胜.这是我国民间很古老的一个游戏,别看这游戏极其简单,却蕴含着深刻的数学原理.下面我们来分析一下要如何才能够取胜. (一)巴什博奕(Bash Game):只有一堆n个物品,两个人轮流从这堆物品中取物,规定每次至少取一个,最多取m个.最后取光者得胜. 显然,如果n=m+1,那么由于一次最多只能取m个,所以,无论先取者拿走多少个,后取者都能够一次拿走剩余的物品,后者取胜.因此我们发

【博弈论】威佐夫博弈

威佐夫博弈     威佐夫博弈:有两堆石子,每次一个人可以两堆同时取相同数量的石子,也可以只取其中一堆的石子,最后谁取完谁获胜,请问先手还是后手胜? 对于学过一些博弈论基础的来说,我们需要找到那些能让先手必输的局势,那么由这些局势在规定范围内拓展的局势也是先手必输的局势(但在这里双方自由选取,不适用).我们可以得出一些局势使A必输:(0,0) (1,2) (3,5) (4,7) (6,10) (8,13) (9,15) (11,18) (12,20)……我们称这些局势为奇异局势 不难发现,如果我

HDU 5963 朋友 【博弈论】 (2016年中国大学生程序设计竞赛(合肥))

朋友 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Problem Description B君在围观一群男生和一群女生玩游戏,具体来说游戏是这样的:给出一棵n个节点的树,这棵树的每条边有一个权值,这个权值只可能是0或1. 在一局游戏开始时,会确定一个节点作为根.接下来从女生开始,双方轮流进行 操作.当一方操作时,他们需要先选择一个不为根的点,满足该点到其父亲的边权为1; 然

博弈论之入门小结

经过几天的学习和刷题,总算对博弈论的基础懂了一些,学习过程中参考了以下两位的总结: 博弈总结        博弈论题目列表 下面列出一些基础博弈的结论定理(证明过程略): (一)巴什博弈(Bash): 一个堆中有n个物体,两人轮流取,每次至少取1个,至多取m个,最后取完者胜. 取胜法则:令n=(m+1)*r+s  (s<=m,r为任意自然数),先取者要想取胜,则要求第一次取时必须取s个. (二)威佐夫博弈(Wythoff): 两个堆中各有若干个物品,两人轮流从某一堆或从两堆中同时取同样多个物品(

工作&ldquo;触雷&rdquo;经历与总结--记博弈论的应用

工作三年,职场受挫.一些值得说或者不值得说的事情,也懒得去记录.无奈,更多时无奈.内心的骄傲或者自负也不值得炫耀.天生骄傲,或者也只是自身内心的呐喊.毕竟,骄傲的人也不会说出来,搞的好像是有点似得. 书归正传.谈回事件的经过. 周末值班,又碰到了产线断网的停线Mail莫名其妙的丢了出来.加上不久前,数据库自动丢出的session高的Mail,或许有某种联系.叙述从如下几个角度展开. 第一,用户面. 没有常规的电话通知,单纯的停线Mail.看到后,第一反应时确认, 根据多次此种,注意是此种,已经明