嵌入式学习笔记007-裸奔篇之定时器

  1. s3c2440的定时器比较简单,这里主要借鉴韦东山老是的code加以改造一下,一个是对head.S的flow改善,另一个是设置FCLK=400MHZ,比例为1:4:8,试过将SDRAM的HCLK=200MHZ,发现不work,查看我的SDRAM是HY57V561620FLT-H clock = 133MHZ,故设置为100MHZ。
  2. 基本上看code及注释应该了解了,就不过多解释了,共有7个文件,如下:

    head.S init.c interrupt.c main.c Makefile s3c24xx.h timer.lds

head.S

@******************************************************************************
@ File:head.S
@ 功能:初始化,设置中断模式、系统模式的栈,设置好中断处理函数
@******************************************************************************       

.extern     main    @ 可有可无
.text
.global _start
_start:
@******************************************************************************
@ 中断向量,本程序中,除Reset和HandleIRQ外,其它异常都没有使用
@******************************************************************************
    b   Reset

@ 0x04: 未定义指令中止模式的向量地址
HandleUndef:
    b   HandleUndef 

@ 0x08: 管理模式的向量地址,通过SWI指令进入此模式
HandleSWI:
    b   HandleSWI

@ 0x0c: 指令预取终止导致的异常的向量地址
HandlePrefetchAbort:
    b   HandlePrefetchAbort

@ 0x10: 数据访问终止导致的异常的向量地址
HandleDataAbort:
    b   HandleDataAbort

@ 0x14: 保留
HandleNotUsed:
    b   HandleNotUsed

@ 0x18: 中断模式的向量地址
    b   HandleIRQ

@ 0x1c: 快中断模式的向量地址
HandleFIQ:
    b   HandleFIQ

Reset:
    ldr sp, =4096           @ 设置栈指针,以下都是C函数,调用前需要设好栈
    bl  disable_watch_dog   @ 关闭WATCHDOG,否则CPU会不断重启
    bl  clock_init          @ 设置MPLL,改变FCLK、HCLK、PCLK
    bl  init_led            @ 初始化LED的GPIO管脚
    bl  timer0_init         @ 初始化定时器0
    bl  init_irq            @ 调用中断初始化函数,在init.c中
    bl  memsetup            @ 设置存储控制器以使用SDRAM
    bl  copy_steppingstone_to_sdram     @ 复制代码到SDRAM中
    ldr sp, =0x34000000     @ 设置系统模式栈指针,
    ldr pc, =on_sdram                   @ 跳到SDRAM中继续执行
on_sdram:
    msr cpsr_c, #0xd2       @ 进入中断模式
    ldr sp, =4096           @ 设置中断模式栈指针
    msr cpsr_c, #0x5f       @ 设置I-bit=0,开IRQ中断

    ldr lr, =halt_loop      @ 设置返回地址
    ldr pc, =main           @ 调用main函数
halt_loop:
    b   halt_loop

HandleIRQ:
    sub lr, lr, #4                  @ 计算返回地址
    stmdb   sp!,    { r0-r12,lr }   @ 保存使用到的寄存器
                                    @ 注意,此时的sp是中断模式的sp
                                    @ 初始值是上面设置的4096

    ldr lr, =int_return             @ 设置调用ISR即EINT_Handle函数后的返回地址
    ldr pc, =Timer0_Handle          @ 调用中断服务函数,在interrupt.c中
int_return:
    ldmia   sp!,    { r0-r12,pc }^  @ 中断返回, ^表示将spsr的值复制到cpsr

init.c

/*
 * init.c: 进行一些初始化
 */ 

#include "s3c24xx.h"

void disable_watch_dog(void);
void clock_init(void);
void memsetup(void);
void copy_steppingstone_to_sdram(void);
void init_led(void);
void timer0_init(void);
void init_irq(void);

/*
 * 关闭WATCHDOG,否则CPU会不断重启
 */
void disable_watch_dog(void)
{
    WTCON = 0;  // 关闭WATCHDOG很简单,往这个寄存器写0即可
}

#define S3C2410_MPLL_200MHZ     ((0x5c<<12)|(0x04<<4)|(0x00))
#define S3C2440_MPLL_200MHZ     ((0x5c<<12)|(0x01<<4)|(0x02))
#define S3C2440_MPLL_400MHZ     ((0x5c<<12)|(0x01<<4)|(0x01))
/*
 * 对于MPLLCON寄存器,[19:12]为MDIV,[9:4]为PDIV,[1:0]为SDIV
 * 有如下计算公式:
 *  S3C2410: MPLL(FCLK) = (m * Fin)/(p * 2^s)
 *  S3C2440: MPLL(FCLK) = (2 * m * Fin)/(p * 2^s)
 *  其中: m = MDIV + 8, p = PDIV + 2, s = SDIV
 * 对于本开发板,Fin = 12MHz
 * 设置CLKDIVN,令分频比为:FCLK:HCLK:PCLK=1:4:8,
 * FCLK=400MHz,HCLK=100MHz,PCLK=50MHz
 */
void clock_init(void)
{
    // LOCKTIME = 0x00ffffff;   // 使用默认值即可
    CLKDIVN  = 0x05;            // FCLK:HCLK:PCLK=1:4:8, HDIVN=2,PDIVN=1

    /* 如果HDIVN非0,CPU的总线模式应该从“fast bus mode”变为“asynchronous bus mode” */
__asm__(
    "mrc    p15, 0, r1, c1, c0, 0\n"        /* 读出控制寄存器 */
    "orr    r1, r1, #0xc0000000\n"          /* 设置为“asynchronous bus mode” */
    "mcr    p15, 0, r1, c1, c0, 0\n"        /* 写入控制寄存器 */
    );

    /* 判断是S3C2410还是S3C2440 */
    if ((GSTATUS1 == 0x32410000) || (GSTATUS1 == 0x32410002))
    {
        MPLLCON = S3C2410_MPLL_200MHZ;  /* 现在,FCLK=200MHz,HCLK=100MHz,PCLK=50MHz */
    }
    else
    {
        MPLLCON = S3C2440_MPLL_400MHZ;  /* 现在,FCLK=400MHz,HCLK=100MHz,PCLK=50MHz */
    }
}

/*
 * 设置存储控制器以使用SDRAM
 */
void memsetup(void)
{
    volatile unsigned long *p = (volatile unsigned long *)MEM_CTL_BASE;

    /* 这个函数之所以这样赋值,而不是像前面的实验(比如mmu实验)那样将配置值
     * 写在数组中,是因为要生成”位置无关的代码”,使得这个函数可以在被复制到
     * SDRAM之前就可以在steppingstone中运行
     */
    /* 存储控制器13个寄存器的值 */
    p[0] = 0x22011110;     //BWSCON
    p[1] = 0x00000700;     //BANKCON0
    p[2] = 0x00000700;     //BANKCON1
    p[3] = 0x00000700;     //BANKCON2
    p[4] = 0x00000700;     //BANKCON3
    p[5] = 0x00000700;     //BANKCON4
    p[6] = 0x00000700;     //BANKCON5
    p[7] = 0x00018005;     //BANKCON6
    p[8] = 0x00018005;     //BANKCON7

    /* REFRESH = 0x008c0000 + R_CNT
     * R_CNT = 2^11 +1 - HCLK(MHZ)*SDRAM_REF_TIME(us , 7.8125)
     * HCLK=12MHz:  0x008C07A3,
     * HCLK=100MHz: 0x008C04f4

     */
    p[9]  = 0x008C04f4;
    p[10] = 0x000000B1;     //BANKSIZE
    p[11] = 0x00000030;     //MRSRB6
    p[12] = 0x00000030;     //MRSRB7
}

void copy_steppingstone_to_sdram(void)
{
    unsigned int *pdwSrc  = (unsigned int *)0;
    unsigned int *pdwDest = (unsigned int *)0x30000000;

    while (pdwSrc < (unsigned int *)4096)
    {
        *pdwDest = *pdwSrc;
        pdwDest++;
        pdwSrc++;
    }
}

/*
 * LED1-4对应GPB5、GPB6、GPB7、GPB8
 */
#define GPB5_out        (1<<(5*2))      // LED1
#define GPB6_out        (1<<(6*2))      // LED2
#define GPB7_out        (1<<(7*2))      // LED3
#define GPB8_out        (1<<(8*2))      // LED4

/*
 * K1-K4对应GPG11、GPG3、GPF2、GPF3
 */
#define GPG11_eint      (2<<(11*2))     // K1,EINT19
#define GPG3_eint       (2<<(3*2))      // K2,EINT11
#define GPF3_eint       (2<<(3*2))      // K3,EINT3
#define GPF2_eint       (2<<(2*2))      // K4,EINT2

void init_led(void)
{
    GPBCON = GPB5_out | GPB6_out | GPB7_out | GPB8_out ;
}

/*
 * Timer input clock Frequency = PCLK / {prescaler value+1} / {divider value}
 * {prescaler value} = 0~255
 * {divider value} = 2, 4, 8, 16
 * 本实验的Timer0的时钟频率=100MHz/(99+1)/(16)=62500Hz
 * 设置Timer0 0.5秒钟触发一次中断:
 */
void timer0_init(void)
{
    TCFG0  = 99;        // 预分频器0 = 99
    TCFG1  = 0x03;      // 选择16分频
    TCNTB0 = 31250;     // 0.5秒钟触发一次中断
    TCON   |= (1<<1);   // 手动更新
    TCON   = 0x09;      // 自动加载,清“手动更新”位,启动定时器0
}

/*
 * 定时器0中断使能
 */
void init_irq(void)
{
    // 定时器0中断使能
    INTMSK   &= (~(1<<10));
}

interrupt.c

#include "s3c24xx.h"

void Timer0_Handle(void)
{
    /*
     * 每次中断令4个LED改变状态
     */
    if(INTOFFSET == 10)
    {
        GPBDAT = ~(GPBDAT & (0xf << 5));
    }
    //清中断
    SRCPND = 1 << INTOFFSET;
    INTPND = INTPND;
}

main.c

int main(void)
{
    while(1);
    return 0;
}

timer.lds

SECTIONS {
    . = 0x30000000;
    .text          :   { *(.text) }
    .rodata ALIGN(4) : {*(.rodata)}
    .data ALIGN(4) : { *(.data) }
    .bss ALIGN(4)  : { *(.bss)  *(COMMON) }
}

s3c24xx.h

/* WOTCH DOG register */
#define     WTCON           (*(volatile unsigned long *)0x53000000)

/* SDRAM regisers */
#define     MEM_CTL_BASE    0x48000000
#define     SDRAM_BASE      0x30000000

/* NAND Flash registers */
#define NFCONF              (*(volatile unsigned int  *)0x4e000000)
#define NFCMD               (*(volatile unsigned char *)0x4e000004)
#define NFADDR              (*(volatile unsigned char *)0x4e000008)
#define NFDATA              (*(volatile unsigned char *)0x4e00000c)
#define NFSTAT              (*(volatile unsigned char *)0x4e000010)

/*GPIO registers*/
#define GPBCON              (*(volatile unsigned long *)0x56000010)
#define GPBDAT              (*(volatile unsigned long *)0x56000014)

#define GPFCON              (*(volatile unsigned long *)0x56000050)
#define GPFDAT              (*(volatile unsigned long *)0x56000054)
#define GPFUP               (*(volatile unsigned long *)0x56000058)

#define GPGCON              (*(volatile unsigned long *)0x56000060)
#define GPGDAT              (*(volatile unsigned long *)0x56000064)
#define GPGUP               (*(volatile unsigned long *)0x56000068)

#define GPHCON              (*(volatile unsigned long *)0x56000070)
#define GPHDAT              (*(volatile unsigned long *)0x56000074)
#define GPHUP               (*(volatile unsigned long *)0x56000078)

/*UART registers*/
#define ULCON0              (*(volatile unsigned long *)0x50000000)
#define UCON0               (*(volatile unsigned long *)0x50000004)
#define UFCON0              (*(volatile unsigned long *)0x50000008)
#define UMCON0              (*(volatile unsigned long *)0x5000000c)
#define UTRSTAT0            (*(volatile unsigned long *)0x50000010)
#define UTXH0               (*(volatile unsigned char *)0x50000020)
#define URXH0               (*(volatile unsigned char *)0x50000024)
#define UBRDIV0             (*(volatile unsigned long *)0x50000028)

/*interrupt registes*/
#define SRCPND              (*(volatile unsigned long *)0x4A000000)
#define INTMOD              (*(volatile unsigned long *)0x4A000004)
#define INTMSK              (*(volatile unsigned long *)0x4A000008)
#define PRIORITY            (*(volatile unsigned long *)0x4A00000c)
#define INTPND              (*(volatile unsigned long *)0x4A000010)
#define INTOFFSET           (*(volatile unsigned long *)0x4A000014)
#define SUBSRCPND           (*(volatile unsigned long *)0x4A000018)
#define INTSUBMSK           (*(volatile unsigned long *)0x4A00001c)

/*external interrupt registers*/
#define EINTMASK            (*(volatile unsigned long *)0x560000a4)
#define EINTPEND            (*(volatile unsigned long *)0x560000a8)

/*clock registers*/
#define LOCKTIME        (*(volatile unsigned long *)0x4c000000)
#define MPLLCON     (*(volatile unsigned long *)0x4c000004)
#define UPLLCON     (*(volatile unsigned long *)0x4c000008)
#define CLKCON      (*(volatile unsigned long *)0x4c00000c)
#define CLKSLOW     (*(volatile unsigned long *)0x4c000010)
#define CLKDIVN     (*(volatile unsigned long *)0x4c000014)

/*PWM & Timer registers*/
#define TCFG0       (*(volatile unsigned long *)0x51000000)
#define TCFG1       (*(volatile unsigned long *)0x51000004)
#define TCON        (*(volatile unsigned long *)0x51000008)
#define TCNTB0      (*(volatile unsigned long *)0x5100000c)
#define TCMPB0      (*(volatile unsigned long *)0x51000010)
#define TCNTO0      (*(volatile unsigned long *)0x51000014)

#define GSTATUS1    (*(volatile unsigned long *)0x560000B0)

Makefile

objs := head.o init.o interrupt.o main.o

timer.bin: $(objs)
    arm-linux-ld -Ttimer.lds -o timer_elf $^
    arm-linux-objcopy -O binary -S timer_elf [email protected]
    arm-linux-objdump -D -m arm timer_elf > timer.dis

%.o:%.c
    arm-linux-gcc -Wall -O2 -c -o [email protected] $<

%.o:%.S
    arm-linux-gcc -Wall -O2 -c -o [email protected] $<

clean:
    rm -f timer.bin timer_elf timer.dis *.o
时间: 2024-10-02 22:30:56

嵌入式学习笔记007-裸奔篇之定时器的相关文章

嵌入式学习笔记008-裸奔篇之串口

串口是个好东西,前几篇裸奔程序由于没有串口,自己调试都是有led等来表示的,比较"苦逼",终于可以用串口了~~~,这里主要采用上一篇博文(嵌入式学习笔记007-裸奔篇之定时器),也就是串口也是用中断实现的,而且也只是在前一篇博文增加串口的初始化uart0_init(),以及在中断处理函数增加对串口的处理.只要稍微改造前一篇博文就是一个通用的中断处理程序! 这里主要实现在串口输入一个字符,接受后+2再发送到串口,所以在串口输入a 会返回c---. 由于code都有相应的注释,读者自行查看

嵌入式学习笔记101-uboot_1.1.6移植(1)

根据前篇博文(嵌入式学习笔记100-uboot1.1.6初体验)最后的结论,现在开始将其实现: a. 修改makefile的CROSS_COMPILE指定编译器 arm-linux-gcc -v –> gcc version 3.4.5 CROSS_COMPILE = /opt/EmbedSky/crosstools_3.4.5_softfloat/gcc-3.4.5-glibc-2.3.6/arm-linux/bin/arm-linux- chmod -R 777 u-boot-1.1.6/

嵌入式学习笔记103-uboot_1.1.6移植(3)

经过之前对uboot的整体flow分析,现在开始针对2440移植,需要注意的是移植的code可能包含支持部分的2410code 不过并没有在s3c2410板子实测过. 主要概括:第一阶段的汇编code尽量短小,能用C实现的就用C,由于2440的board和头文件是从2410 copy过来的 里面会有很多信息或者宏关于2410,并且很多.c文件的头文件由于include的是2410,所以新增的一些关于2440的结构体也会一并放在2410.h,移植的思想与前文类似, 根据code的执行流程来移植.

嵌入式学习笔记201-Linux kernel动起来

在前篇博文<嵌入式学习笔记200-Linux kernel初体验>在已经确保环境编译是ok的,接下来让kernel能够最基本的动起来,起码可以看到基本的启动打印! 修改外部输入时钟频率, 修改 linux-2.6.30.4\arch\arm\mach-s3c2440\mach-smdk2440.c 在大概163行将16934400改成12000000. static void __init smdk2440_map_io(void) { s3c24xx_init_io(smdk2440_iod

嵌入式学习笔记104-uboot_1.1.6移植(4)

前面的4篇uboot博文基本概括了uboot的整体flow,现在使能支持启动linux,至此之前请先阅读<嵌入式学习笔记200-Linux kernel初体验>和<嵌入式学习笔记201-Linux kernel动起来>.准备kernel的镜像文件才可以立马检测uboot是否能够启动kernel.在u-boot-1.1.6\include\configs\tq2440.h 最后添加如下几行code: /****************** boot kernel setup ****

SaltStack 学习笔记 - 第十二篇: SaltStack Web 界面

SaltStack 有自身的用python开发的web界面halite,好处是基于python,可以跟salt的api无缝配合,确定就比较明显,需要个性化对web界面进行定制的会比较麻烦,如果喜欢体验该界面的可以参考下面的文章  http://rfyiamcool.blog.51cto.com/1030776/1275443/ 我是运用另一个python+php来进行web开发,具体需要的工具有在我的另一篇文章里面介绍过,这里再重新进行整个开发介绍 首先介绍php 跟python通信的工具 pp

现代C++学习笔记之二入门篇2,数据转换

static_cast:    这种强制转换只会在编译时检查. 如果编译器检测到您尝试强制转换完全不兼容的类型,则static_cast会返回错误. 您还可以使用它在基类指针和派生类指针之间强制转换,但是,编译器在无法分辨此类转换在运行时是否是安全的. dynamic_cast: dynamic_cast在运行时检查基类指针和派生类指针之间的强制转换. dynamic_cast 是比 static_cast 更安全的强制类型转换,但运行时检查会带来一些开销. const_cast:    con

ObjectARX 学习笔记007:创建模态对话框的一般步骤

1.新建一个工程,注意将"使用MFC"选项勾上. 2.使用[insert/Resouce]菜单项插入一个对话框. 3.此时会弹出一个窗体,直接按Enter键可以调出[属性]面板.设置窗体的ID和窗体的Caption. 4.可以点击[属性]面板左上角的图钉图标将其常显. 5.向窗体中插入控件,依次设置其ID与Caption. 6.按Ctrl+W为对话框资源创建一个类.此时系统会在工程中添加一个.cpp文件和一个对应的.h文件. 7.注册一个新命令,用于显示新的对话框. 8.在xxxCom

现代C++学习笔记之二入门篇1

现代 C++ 强调: 基于堆栈的范围,而非堆或静态全局范围. 自动类型推理,而非显式类型名称. 智能指针而不是原始指针. std::string 和 std::wstring 类型(请参见 <string>),而非原始 char[] 数组. 标准模板库 (STL) 容器(例如 vector.list 和 map),而非原始数组或自定义容器. 请参见 <vector>.<list> 和 <map>. STL 算法,而非手动编码的算法. 异常,可报告和处理错误条

《MyCat 学习笔记》第八篇.数据分片 之 求摸运算分片

1 应用场景 Mycat 自带了多套数据分片的机制,其实根据数值取摸应该是最简单的一种. 优点:数据离散概率较为平均,可以有效的提高应用的数据吞吐. 缺点:比较明显,后期数据运维与迁移比较困难.好在Mycat有对应的解决方案,具体后期验证或可直接参考Mycat权威指南相应章节. 2 环境说明 参考  <MyCat 学习笔记>第六篇.数据分片 之 按月数据分片  http://www.cnblogs.com/kaye0110/p/5160826.html 3 参数配置 3.1 server.xm