题目:求一个整数的重复拆分,限制拆分数的个数。
分析:dp,二维多重背包。整数拆分就用背包。
状态:设f(i,j)为j拆分成i个元素的拆法;
转移:f(i,j)= sum(f(i-1,j-k),f(i-1,j-2k),...,f(i-1,j-mk)){ 其中,1 ≤ k ≤ j };
因为输入格式WA好多次,强大的sscanf( ⊙ o ⊙ )啊!
说明:注意数据范围,使用long long防止溢出。
#include <iostream> #include <cstdlib> #include <cstring> #include <cstdio> using namespace std; long long F[303][303],S[303][303]; int main() { for (int i = 0 ; i <= 300 ; ++ i) for (int j = 0 ; j <= 300 ; ++ j) F[i][j] = S[i][j] = 0LL; F[0][0] = 1LL; for (int i = 1 ; i <= 300 ; ++ i) for (int j = 1 ; j <= 300 ; ++ j) for (int k = i ; k <= 300 ; ++ k) F[j][k] += F[j-1][k-i]; S[0][0] = 1LL; for (int i = 1 ; i <= 300 ; ++ i) for (int j = 0 ; j <= 300 ; ++ j) S[i][j] = S[i-1][j]+F[i][j]; int N,L1,L2; char buf[256]; while (gets(buf)) { int n = sscanf(buf,"%d%d%d",&N,&L1,&L2); if (n > 1) { if (L1 > 300) L1 = 300; if (n > 2) { if (L2 > 300) L2 = 300; if (L1 > L2) cout << 0 << endl; else if (L1) cout << S[L2][N] - S[L1-1][N] << endl; else cout << S[L2][N] << endl; }else cout << S[L1][N] << endl; }else cout << S[N][N] << endl; } return 0; }
时间: 2024-10-11 11:42:22