Avro介绍

Avro介绍

Apache Avro是一个数据序列化系统。

Avro所提供的属性:

1.丰富的数据结构
2.使用快速的压缩二进制数据格式
3.提供容器文件用于持久化数据
4.远程过程调用RPC
5.简单的动态语言结合功能,Avro 和动态语言结合后,读写数据文件和使用 RPC 协议都不需要生成代码,而代码生成作为一种可选的优化只值得在静态类型语言中实现。

Avro的Schema

Avro的Schema用JSON表示。Schema定义了简单数据类型和复杂数据类型。

基本类型

其中简单数据类型有以下8种:

类型 含义
null 没有值
boolean 布尔值
int 32位有符号整数
long 64位有符号整数
float 单精度(32位)的IEEE 754浮点数
double 双精度(64位)的IEEE 754浮点数
bytes 8位无符号字节序列
string 字符串

基本类型没有属性,基本类型的名字也就是类型的名字,比如:

{"type": "string"}

复杂类型

Avro提供了6种复杂类型。分别是Record,Enum,Array,Map,Union和Fixed。

Record

Record类型使用的类型名字是 “record”,还支持其它属性的设置:

name:record类型的名字(必填)

namespace:命名空间(可选)

doc:这个类型的文档说明(可选)

aliases:record类型的别名,是个字符串数组(可选)

fields:record类型中的字段,是个对象数组(必填)。每个字段需要以下属性:

  1. name:字段名字(必填)
  2. doc:字段说明文档(可选)
  3. type:一个schema的json对象或者一个类型名字(必填)
  4. default:默认值(可选)
  5. order:排序(可选),只有3个值ascending(默认),descending或ignore
  6. aliases:别名,字符串数组(可选)

一个Record类型例子,定义一个元素类型是Long的链表:

{
  "type": "record",
  "name": "LongList",
  "aliases": ["LinkedLongs"],                      // old name for this
  "fields" : [
    {"name": "value", "type": "long"},             // each element has a long
    {"name": "next", "type": ["null", "LongList"]} // optional next element
  ]
}

Enum

枚举类型的类型名字是”enum”,还支持其它属性的设置:

name:枚举类型的名字(必填)
namespace:命名空间(可选)
aliases:字符串数组,别名(可选)
doc:说明文档(可选)
symbols:字符串数组,所有的枚举值(必填),不允许重复数据。

一个枚举类型的例子:

{ "type": "enum",
  "name": "Suit",
  "symbols" : ["SPADES", "HEARTS", "DIAMONDS", "CLUBS"]
}

Array

数组类型的类型名字是”array”并且只支持一个属性:

items:数组元素的schema

一个数组例子:

{"type": "array", "items": "string"}

Map

Map类型的类型名字是”map”并且只支持一个属性:

values:map值的schema

Map的key必须是字符串。

一个Map例子:

{"type": "map", "values": "long"}

Union

组合类型,表示各种类型的组合,使用数组进行组合。比如[“null”, “string”]表示类型可以为null或者string。

组合类型的默认值是看组合类型的第一个元素,因此如果一个组合类型包括null类型,那么null类型一般都会放在第一个位置,这样子的话这个组合类型的默认值就是null。

组合类型中不允许同一种类型的元素的个数不会超过1个,除了record,fixed和enum。比如组合类中有2个array类型或者2个map类型,这是不允许的。

组合类型不允许嵌套组合类型。

Fixed

混合类型的类型名字是fixed,支持以下属性:

name:名字(必填)
namespace:命名空间(可选)
aliases:字符串数组,别名(可选)
size:一个整数,表示每个值的字节数(必填)

比如16个字节数的fixed类型例子如下:

{"type": "fixed", "size": 16, "name": "md5"}

1个Avro例子

首先定义一个User的schema:

{
"namespace": "example.avro",
 "type": "record",
 "name": "User",
 "fields": [
     {"name": "name", "type": "string"},
     {"name": "favorite_number",  "type": "int"},
     {"name": "favorite_color", "type": "string"}
 ]
}

User有3个属性,分别是name,favorite_number和favorite_color。

json文件内容:

{"name":"format","favorite_number":1,"favorite_color":"red"}
{"name":"format2","favorite_number":2,"favorite_color":"black"}
{"name":"format3","favorite_number":666,"favorite_color":"blue"}

使用avro工具将json文件转换成avro文件:

java -jar avro-tools-1.8.0.jar fromjson --schema-file user.avsc user.json > user.avro

可以设置压缩格式:

java -jar avro-tools-1.8.0.jar fromjson --codec snappy --schema-file user.avsc user.json > user2.avro

将avro文件反转换成json文件:

java -jar avro-tools-1.8.0.jar tojson user.avro
java -jar avro-tools-1.8.0.jar --pretty tojson user.avro

得到avro文件的meta:

java -jar avro-tools-1.8.0.jar getmeta user.avro

输出:

avro.codec    null
avro.schema    {"type":"record","name":"User","namespace":"example.avro","fields":[{"name":"name","type":"string"},{"name":"favorite_number","type":"int"},{"name":"favorite_color","type":"string"}]}

得到avro文件的schema:

java -jar avro-tools-1.8.0.jar getschema user.avro

将文本文件转换成avro文件:

java -jar avro-tools-1.8.0.jar fromtext user.txt usertxt.avro

Avro使用生成的代码进行序列化和反序列化

以上面一个例子的schema为例讲解。

Avro可以根据schema自动生成对应的类:

java -jar /path/to/avro-tools-1.8.0.jar compile schema user.avsc .

user.avsc的namespace为example.avro,name为User。最终在当前目录生成的example/avro目录下有个User.java文件。

├── example
│   └── avro
│       └── User.java

使用Avro生成的代码创建User:

User user1 = new User();
user1.setName("Format");
user1.setFavoriteColor("red");
user1.setFavoriteNumber(666);

User user2 = new User("Format2", 66, "blue");

User user3 = User.newBuilder()
                .setName("Format3")
                .setFavoriteNumber(6)
                .setFavoriteColor("black").build();

可以使用有参的构造函数和无参的构造函数,也可以使用Builder构造User。

序列化:

DatumWrite接口用来把java对象转换成内存中的序列化格式,SpecificDatumWriter用来生成类并且指定生成的类型。

最后使用DataFileWriter来进行具体的序列化,create方法指定文件和schema信息,append方法用来写数据,最后写完后close文件。

DatumWriter<User> userDatumWriter = new SpecificDatumWriter<User>(User.class);
        DataFileWriter<User> dataFileWriter = new DataFileWriter<User>(userDatumWriter);
dataFileWriter.create(user1.getSchema(), new File("users.avro"));
dataFileWriter.append(user1);
dataFileWriter.append(user2);
dataFileWriter.append(user3);
dataFileWriter.close();

反序列化:

反序列化跟序列化很像,相应的Writer换成Reader。这里只创建一个User对象是为了性能优化,每次都重用这个User对象,如果文件量很大,对象分配和垃圾收集处理的代价很昂贵。如果不考虑性能,可以使用 for (User user : dataFileReader) 循环遍历对象

File file = new File("users.avro");
DatumReader<User> userDatumReader = new SpecificDatumReader<User>(User.class);
DataFileReader<User> dataFileReader = new DataFileReader<User>(file, userDatumReader);
User user = null;
while(dataFileReader.hasNext()) {
    user = dataFileReader.next(user);
    System.out.println(user);
}

打印出:

{"name": "Format", "favorite_number": 666, "favorite_color": "red"}
{"name": "Format2", "favorite_number": 66, "favorite_color": "blue"}
{"name": "Format3", "favorite_number": 6, "favorite_color": "black"}

Avro不使用生成的代码进行序列化和反序列化

虽然Avro为我们提供了根据schema自动生成类的方法,我们也可以自己创建类,不使用Avro的自动生成工具。

创建User:

首先使用Parser读取schema信息并且创建Schema类:

Schema schema = new Schema.Parser().parse(new File("user.avsc"));

有了Schema之后可以创建record:

GenericRecord user1 = new GenericData.Record(schema);
user1.put("name", "Format");
user1.put("favorite_number", 666);
user1.put("favorite_color", "red");

GenericRecord user2 = new GenericData.Record(schema);
user2.put("name", "Format2");
user2.put("favorite_number", 66);
user2.put("favorite_color", "blue");

使用GenericRecord表示User,GenericRecord会根据schema验证字段是否正确,如果put进了不存在的字段 user1.put(“favorite_animal”, “cat”) ,那么运行的时候会得到AvroRuntimeException异常。

序列化:

序列化跟生成的User类似,只不过schema是自己构造的,不是User中拿的。

Schema schema = new Schema.Parser().parse(new File("user.avsc"));
GenericRecord user1 = new GenericData.Record(schema);
user1.put("name", "Format");
user1.put("favorite_number", 666);
user1.put("favorite_color", "red");

GenericRecord user2 = new GenericData.Record(schema);
user2.put("name", "Format2");
user2.put("favorite_number", 66);
user2.put("favorite_color", "blue");

DatumWriter<GenericRecord> datumWriter = new SpecificDatumWriter<GenericRecord>(schema);
DataFileWriter<GenericRecord> dataFileWriter = new DataFileWriter<GenericRecord>(datumWriter);
dataFileWriter.create(schema, new File("users2.avro"));
dataFileWriter.append(user1);
dataFileWriter.append(user2);
dataFileWriter.close();

反序列化:

反序列化跟生成的User类似,只不过schema是自己构造的,不是User中拿的。

Schema schema = new Schema.Parser().parse(new File("user.avsc"));
File file = new File("users2.avro");
DatumReader<GenericRecord> datumReader = new SpecificDatumReader<GenericRecord>(schema);
DataFileReader<GenericRecord> dataFileReader = new DataFileReader<GenericRecord>(file, datumReader);
GenericRecord user = null;
while(dataFileReader.hasNext()) {
    user = dataFileReader.next(user);
    System.out.println(user);
}

打印出:

{"name": "Format", "favorite_number": 666, "favorite_color": "red"}
{"name": "Format2", "favorite_number": 66, "favorite_color": "blue"}

一些注意点

Avro解析json文件的时候,如果类型是Record并且里面有字段是union并且允许空值的话,需要进行转换。因为[“bytes”, “string”]和[“int”,”long”]这2个union类型在json中是有歧义的,第一个union在json中都会被转换成string类型,第二个union在json中都会被转换成数字类型。

所以如果json值的null的话,在avro提供的json中直接写null,否则使用只有一个键值对的对象,键是类型,值的具体的值。

比如:

{
"namespace": "example.avro",
 "type": "record",
 "name": "User",
 "fields": [
     {"name": "name", "type": "string"},
     {"name": "favorite_number",  "type": ["int","null"]},
     {"name": "favorite_color", "type": ["string","null"]}
 ]
}

在要转换成json文件的时候要写成这样:

{"name":"format","favorite_number":{"int":1},"favorite_color":{"string":"red"}}
{"name":"format2","favorite_number":null,"favorite_color":{"string":"black"}}
{"name":"format3","favorite_number":{"int":66},"favorite_color":null}

Spark读取Avro文件

直接遍历avro文件,得到GenericRecord进行处理:

val conf = new SparkConf().setMaster("local").setAppName("AvroTest")

val sc = new SparkContext(conf)

val rdd = sc.hadoopFile[AvroWrapper[GenericRecord], NullWritable, AvroInputFormat[GenericRecord]](this.getClass.getResource("/").toString + "users.avro")

val nameRdd = rdd.map(s => s._1.datum().get("name").toString)

nameRdd.collect().foreach(println)

使用Avro需要注意的地方

笔者使用Avro的时候暂时遇到了下面2个坑。先记录一下,以后遇到新的坑会更新这篇文章。

1.如果定义了unions类型的字段,而且unions中有null选项的schema,比如如下schema:

{
"namespace": "example.avro",
 "type": "record",
 "name": "User2",
 "fields": [
     {"name": "name", "type": "string"},
     {"name": "favorite_number",  "type": ["null","int"]},
     {"name": "favorite_color", "type": ["null","string"]}
 ]
}

这样的schema,如果不使用Avro自动生成的model代码进行insert,并且insert中的model数据有null数据的话。然后用spark读avro文件的话,会报org.apache.avro.AvroTypeException: Found null, expecting int … 这样的错误。

这一点很奇怪,但是使用Avro生成的Model进行insert的话,sprak读取就没有任何问题。 很困惑。

2.如果使用了Map类型的字段,avro生成的model中的Map的Key默认类型为CharSequence。这种model我们insert数据的话,用String是没有问题的。但是spark读取之后要根据Key拿这个Map数据的时候,永远得到的是null。

stackoverflow上有一个页面说到了这个问题。http://stackoverflow.com/questions/19728853/apache-avro-map-uses-charsequence-as-key

需要在map类型的字段里加上”avro.java.string”: “String”这个选项, 然后compile的时候使用-string参数即可。

比如以下这个schema:

{
"namespace": "example.avro",
 "type": "record",
 "name": "User3",
 "fields": [
     {"name": "name", "type": "string"},
     {"name": "favorite_number",  "type": ["null","int"]},
     {"name": "favorite_color", "type": ["null","string"]},
     {"name": "scores", "type": ["null", {"type": "map", "values": "string", "avro.java.string": "String"}]}
 ]
}
时间: 2024-10-29 22:55:31

Avro介绍的相关文章

Microsoft Avro介绍

Microsoft发布了他们自己对Apache Avro通信协议的实现.Avro被描述为"紧凑的二进制数据序列化格式,类似于Thrift或者Protocol Buffers",同时还有像Hadoop这样的分布式处理环境所需要的额外功能. 为了让该协议尽可能地快,Microsoft Avro类库会在运行时使用表达式树构建并编译一个自定义的序列化器.在第一次命中将序列化器编译成IL代码之后,它的性能要比基于反射的算法更好. 和Protocol Buffers不同的是,Avro协议是自描述的

spark使用scala读取Avro数据(转)

这是一篇翻译,原文来自:How to load some Avro data into Spark. 首先,为什么使用 Avro ? 最基本的格式是 CSV ,其廉价并且不需要顶一个一个 schema 和数据关联. 随后流行起来的一个通用的格式是 XML,其有一个 schema 和 数据关联,XML 广泛的使用于 Web Services 和 SOA 架构中.不幸的是,其非常冗长,并且解析 XML 需要消耗内存. 另外一种格式是 JSON,其非常流行易于使用因为它非常方便易于理解. 这些格式在

基于Hadoop2.0、YARN技术的大数据高阶应用实战(Hadoop2.0\YARN\Ma

Hadoop的前景 随着云计算.大数据迅速发展,亟需用hadoop解决大数据量高并发访问的瓶颈.谷歌.淘宝.百度.京东等底层都应用hadoop.越来越多的企 业急需引入hadoop技术人才.由于掌握Hadoop技术的开发人员并不多,直接导致了这几年hadoop技术的薪水远高于JavaEE及 Android程序员. Hadoop入门薪资已经达到了8K以上,工作1年可达到1.2W以上,具有2-3年工作经验的hadoop人才年薪可以达到30万—50万. 一般需要大数据处理的公司基本上都是大公司,所以学

最完整的历史记录hadoop

课程主要涉及Hadoop Sqoop.Flume.Avro重要子项目的技术实战 课程针对人群 1.本课程适合于有一定java基础知识.对数据库和sql语句有一定了解,熟练使用linux系统的技术人员,特别适合于想换工作或寻求高薪职业的人士 2.最好有Greenplum Hadoop.Hadoop2.0.YARN.Sqoop.FlumeAvro等大数据基础.学习过北风课程<Greenplum 分布式数据库开发入门到精通>.<全面深入Greenplum Hadoop大数据分析平台>.&

史上最全的hadoop

课程主要涉及Hadoop Sqoop.Flume.Avro重要子项目的技术实战 课程针对人群 1.本课程适合于有一定java基础知识,对数据库和sql语句有一定了解,熟练使用linux系统的技术人员,特别适合于想换工作或寻求高薪职业的人士 2.最好有Greenplum Hadoop.Hadoop2.0.YARN.Sqoop.FlumeAvro等大数据基础,学习过北风课程<Greenplum 分布式数据库开发入门到精通>.<全面深入Greenplum Hadoop大数据分析平台>.&

Hadoop大数据零基础高端实战培训视频

<Hadoop大数据零基础高端实战培训系列配文本挖掘项目(七大亮点.十大目标)> 课程讲师:迪伦 课程分类:大数据 适合人群:初级 课时数量: 300课时 用到技术:部署Hadoop集群 涉及项目:京东商城.百度.阿里巴巴 咨询QQ:779591710 下载地址: 链接:http://pan.baidu.com/share/link?shareid=3299239734&uk=3289559542 密码:8tkb 第一阶段:Hadoop基础篇(50课时) - 千里之行,始于足下(赠送课

Hadoop2.0、YARN技术大数据视频教程

基于Hadoop2.0.YARN技术的大数据高阶应用实战(Hadoop2.0\YARN\MapReduce\数据挖掘\项目实战)课程分类:Hadoop适合人群:高级课时数量:81课时用到技术:基于协同过滤的推荐系统.基于HBase的爬虫调度库涉及项目:银行人民币查询系统.HBase编程实践及案例分析咨询qq:1840215592 课程内容简介本课程基于<基于Greenplum Hadoop分布式平台的大数据解决方案>Hadoop部分的基础课程来进行扩展延伸,主要内容分为以下四部分:一.对Had

大数据入门:各种大数据技术介绍

转自:http://www.aboutyun.com/thread-7569-1-1.html 大数据我们都知道hadoop,可是还会各种各样的技术进入我们的视野:Spark,Storm,impala,让我们都反映不过来.为了能够更好的架构大数据项目,这里整理一下,供技术人员,项目经理,架构师选择合适的技术,了解大数据各种技术之间的关系,选择合适的语言.我们可以带着下面问题来阅读本文章:1.hadoop都包含什么技术2.Cloudera公司与hadoop的关系是什么,都有什么产品,产品有什么特性

Hadoop 学习笔记五 ---Hadoop系统通信协议介绍

本文约定: DN: DataNode TT: TaskTracker NN: NameNode SNN: Secondry NameNode JT: JobTracker 本文介绍Hadoop各节点和Client之间通信协议. Hadoop的通信是建立在RPC的基础上,关于RPC的详解介绍大家可以参照 "hadoop rpc机制 && 将avro引入hadoop rpc机制初探" Hadoop中节点之间的通信是比较复杂的一个网络,若可以把它们之间的通信网络了解清楚,那么