喵哈哈的日常选数问题

Time Limit: 2000/1000MS (Java/Others) Memory Limit: 128000/64000KB (Java/Others)

Problem Description

喵哈哈村子的TTT同学比较怪,他非常讨厌一类数字,是哪种呢?

就是讨厌那些含有37或者4的数

比如 21379,123485,12379。

但是他并不讨厌928357这个数,因为他即不包含37,也没有4。

现在你[L,R]的区间,问你在这个区间中,最多能够选出多少个TTT同学不讨厌的数呢?

Input

输入两个整数,表示L和R

1 <= L <= R <= 2000000000 。

Output

输出一个整数,表示选出的数的个数

Sample Input

1 10

Sample Output

9

解题思路:数位DP

#include <cstdio>

int DP[15][15];

int solve(int n) {
    int cnt = 0, ans= 0, num[15];
    while (n > 0) {
        num[++cnt] = n % 10;
        n /= 10;
    }
     num[cnt+1] = 0;
    for (int i = cnt; i > 0; i--) {
        for (int j = 0; j < num[i]; j++) {
            if (j != 4 && !(num[i+1] == 3 && j == 7))
            ans += DP[i][j];
        }
        if (num[i] == 4 || (num[i] == 7 && num[i+1] == 3))
            break;
    }
    return ans;
}

int main() {
    int L, R;
    DP[0][0] = 1;
    for (int i = 1; i <= 10; i++)
        for (int j = 0; j < 10; j++)
            for (int k = 0; k < 10; k++)
                if (j != 4 && !(j == 3 && k == 7))
                    DP[i][j] += DP[i-1][k];

    while (scanf("%d%d", &L, &R) != EOF)
        printf("%d\n", solve(R+1) - solve(L));

    return 0;
}

版权声明:本文为博主原创文章,未经博主允许不得转载。

时间: 2024-11-05 11:37:10

喵哈哈的日常选数问题的相关文章

BZOJ 3930 【CQOI2015】 选数

题目链接:选数 MDZZ,这种SB题我都Wa了这么多发,彻底没救系列- 首先,我们可以发现1,如果我们选了两个不同的数,那么它们的\(\gcd\)不会超过\(r-l+1\).于是,我们可以设一个\(f_i\)表示任取\(n\)个数,它们的\(\gcd\)为\(ik\)的方案数,最后我们要的答案就是\(f_1\).我们考虑容斥一下,在求\(f_i\)的时候,先把\([l,r]\)中是\(ik\)倍数的数全部拿出来,然后任意选\(n\)个,这样选出来的数他们的\(\gcd\)一定是\(ik\)的倍数

bzoj2734【HNOI2012】集合选数

2734: [HNOI2012]集合选数 Time Limit: 10 Sec  Memory Limit: 128 MB Submit: 831  Solved: 487 [Submit][Status][Discuss] Description <集合论与图论>这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x 不能在该子集中.同学们不喜欢这种具有枚举性 质的题目,于是把它变成了以下问题:对于任意一个正整数

NOIP 2002提高组 选数 dfs/暴力

1008 选数 2002年NOIP全国联赛普及组 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 题目描述 Description 已知 n 个整数 x1,x2,…,xn,以及一个整数 k(k<n).从 n 个整数中任选 k 个整数相加,可分别得到一系列的和.例如当 n=4,k=3,4 个整数分别为 3,7,12,19 时,可得全部的组合与它们的和为: 3+7+12=22 3+7+19=29 7+12+19=38 3+12+19=34. 现在,要求你计算出和为素

BZOJ 3930: [CQOI2015]选数

3930: [CQOI2015]选数 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1130  Solved: 532[Submit][Status][Discuss] Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公约数,以便进一步研究.然而他很快发现工作量太大了,于是向你寻求帮助.你的任务很简

BZOJ 2734 集合选数(状态压缩DP)

题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=2734 题意:给出一个由1到n的数字组成的集合.定义合法子集为若x在子集中则2x.3x均不能在子集中.求有多少个合法的子集. 思路: 1   3    9 2   6    12 4   12   36 对于上面的矩阵,我们发现就等价于不选相邻数字的方案数.因此枚举每个还没有用到的数字,建立以该数字为左上角的矩阵.接着就是状态压缩DP. int a[N][N]; i64 f[2][1<<

【BZOJ-2732】集合选数 状压DP (思路题)

2734: [HNOI2012]集合选数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1070  Solved: 623[Submit][Status][Discuss] Description <集合论与图论>这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x 不能在该子集中.同学们不喜欢这种具有枚举性 质的题目,于是把它变成了以下问题:对于任意一个正整数 n

[HNOI2012][BZOJ2734] 集合选数|状态压缩动态规划|思路题

2734: [HNOI2012]集合选数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 708  Solved: 414[Submit][Status][Discuss] Description <集合论与图论>这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x 不能在该子集中.同学们不喜欢这种具有枚举性 质的题目,于是把它变成了以下问题:对于任意一个正整数 n≤

1008 选数 2002年NOIP全国联赛普及组

1008 选数 2002年NOIP全国联赛普及组 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 题解 查看运行结果 题目描述 Description 已知 n 个整数 x1,x2,…,xn,以及一个整数 k(k<n).从 n 个整数中任选 k 个整数相加,可分别得到一系列的和.例如当 n=4,k=3,4 个整数分别为 3,7,12,19 时,可得全部的组合与它们的和为: 3+7+12=22 3+7+19=29 7+12+19=38 3+12+19=34. 现在

bzoj 2734: [HNOI2012]集合选数 状压DP

2734: [HNOI2012]集合选数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 560  Solved: 321[Submit][Status] Description <集合论与图论>这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x 不能在该子集中.同学们不喜欢这种具有枚举性 质的题目,于是把它变成了以下问题:对于任意一个正整数 n≤100000,如何