Problem Description
The least common multiple (LCM) of a set of positive integers is the smallest positive integer which is divisible by all the numbers in the set. For example, the LCM of 5, 7 and 15 is 105.
Input
Input will consist of multiple problem instances. The first line of the input will contain a single integer indicating the number of problem instances. Each instance will consist of a single line of the form m n1 n2 n3 ... nm where m is the number of integers
in the set and n1 ... nm are the integers. All integers will be positive and lie within the range of a 32-bit integer.
Output
For each problem instance, output a single line containing the corresponding LCM. All results will lie in the range of a 32-bit integer.
Sample Input
2 3 5 7 15 6 4 10296 936 1287 792 1
Sample Output
105 10296
思路:写一个两两求最小公倍数的函数(用long long)然后循环处理
ps vc环境的__int64貌似在处理较小的数时容易出现错误
#include<stdio.h> #include<iostream> using namespace std; long long lcd(long long n,long long m) { long long r; //scanf("%d%d",&n,&m); if(n<m)swap(n,m); long long p=n*m; while(m!=0) { r=n%m; n=m; m=r; } return p/n; } int main() { long long num[100]; int n1,n2,o; scanf("%d",&n1); while(n1--) { scanf("%d",&n2); for(int o=0;o<n2;o++) { scanf("%lld",&num[o]); } for(o=1;o<n2;o++) { num[o]=lcd(num[o],num[o-1]); } printf("%lld\n",num[o-1]); } }