同余相关定理证明

原文地址:https://www.cnblogs.com/p-z-y/p/10322529.html

时间: 2024-10-09 07:08:51

同余相关定理证明的相关文章

ACM数论中相关定理(不断更新)

费马小定理是数论中的一个重要定理,其内容为: 假如p是质数,且(a,p)=1,那么 a^(p-1) ≡1(mod p).即:假如a是整数,p是质数,且a,p互质,那么a的(p-1)次方除以p的余数恒等于1. 费马大定理,又被称为“费马最后的定理”,由法国数学家费马提出.它断言当整数n >2时,关于x, y, z的方程 x^n + y^n = z^n 没有正整数解.被提出后,经历多人猜想辩证,历经三百多年的历史,最终在1995年被英国数学家安德鲁·怀尔斯证明. 中国剩余定理的结论: 令任意固定整数

数学定理证明机械化的中国学派(II)

所谓"学派"是指:存在一帮人,具有相同或接近的学术观点或学术立场,采用某种特定的"方法"(或途径),在一个学术方向上共同开展工作,并且做出了相当有迎影响的学术成就. 数学定理证明机械化的途径很多,但是,"吴方法"只有一种.什么是"吴方法"?我们拿初等(平面)几何学为例,所谓"吴方法"实质上就是"方程联立求证法".什么叫"方程联立求证法"呢? 比如说,我们需要求证一个几

赫尔布朗特定理开启自动定理证明的大门

1930年,年仅22岁的法国"小毛头"赫尔布朗特(Jacques Herbrand,1908-1931)在登山时遇难的前一年给我们留下了一条数理逻辑的基本定理:赫尔布朗特定理.这条定理有什么意义呢? 大家知道,在数理逻辑里面,引入量词符号"?"与"?",是很重要的,但是,对于数学自动鼎定理证明而言,量词符号"?"与"?"就是累赘.怎么办呢? 在所谓"一阶逻辑"里面,符号"?&q

数学定理证明机械化的中国学派(I)

1997年,吴文俊院士获得赫尔布朗特奖,说明了什么呢?首先,我们必须明确的是:赫尔布朗特奖是当今国际数学界自动定理证明研究领域的最高学术奖项.该奖项的授予标志着国际学术界(同仁)对获奖项目的一致认可. 回顾历年来,赫尔布朗特获奖者的名单如下: Larry Wos (1992) Woody Bledsoe (1994) John Alan Robinson (1996) Wu Wenjun (1997,吴文俊) Gérard Huet (1998) Robert S. Boyer and JStr

数学自动定理证明的前景

7月2日下午,北京市小学开始放暑假,二楼的小孙孙不停地大喊大叫,对此,我心中很烦.但是,上楼一看,发现小孙孙正在网络上与同学玩连网游戏,...引起我对往事的回忆. 上世纪50年代,通用计算机刚刚问世(1954年),数学家就在计算机上动脑筋了,想搞"机器自动定理证明".起初,他们(数学家)拿罗素名著"数学原理"开刀(小试牛刀),在三条推理规则(模块生成.变量代换与公式置换)的前提下,让计算机自动证明了"数学原理"中前54个定理的38个,可谓&quo

推荐系列:最小与最大[DP+余式定理]

最小与最大 [问题描述] 做过了乘积最大这道题,相信这道题也难不倒你. 已知一个数串,可以在适当的位置加入乘号(设加了k个,当然也可不加,即分成k+1个部分),设这k+1个部分的乘积(如果k=0,则乘积即为原数串的值)对m 的余数(即mod m)为x; 现求x能达到的最小值及该情况下k的最小值,以及x能达到的最大值及该情况下的k的最小值(可以存在x的最小值与最大值相同的情况). [输入] 第一行为数串,长度为n 满足2<=n<=1000,且数串中不存在0: 第二行为m,满足2<=m<

费马小定理证明

  费马小定理证明 费马小定理定义:假如p是质数,且gcd(a,p)=1,那么a^(p-1)≡1(mod p),就是说,如果p是质数,并且a与p互质,那么a的p-1次方膜上p恒等于1.下面给出证明: 例如:13是一个质数,那么1,2,3,4,5,6,7,8,9,10,11,12乘上一个与13互质的数,比如乘上3,得到3,6,9,12,15,18,21,24,27,30,33,36,   然后膜上13得到3,6,9,12,2,5,8,11,1,4,7,10,给这些数排序就会发现,他们就是1,2,3

倍数相关定理

[倍数相关定理] 1.最小公倍数的充要条件. 2.互质数的最小公倍数. 3.加入素质数的最小公倍数. 4.[]与()的关系. 5.指数定理. 6.递推关系 . 7. 8. 9. 10. 11.

lucas定理证明

Lucas 定理(证明) A.B是非负整数,p是质数.AB写成p进制:A=a[n]a[n-1]...a[0],B=b[n]b[n-1]...b[0]. 则组合数C(A,B)与C(a[n],b[n])*C(a[n-1],b[n-1])*...*C(a[0],b[0])  mod p 相同 即:Lucas(n,m,p)=c(n%p,m%p)*Lucas(n/p,m/p,p) 证明: 首先我们注意到 n=(ak...a2,a1,a0)p  =  (ak...a2,a1)p * p + a0 =  [n