EOJ Monthly 2019.3A

A. 钝角三角形

单点时限: 3.0 sec

内存限制: 512 MB

QQ 小方以前不会判断钝角三角形,现在他会了,所以他急切的想教会你。

如果三角形的三边长分别为 a, b, c (a≤b≤c),那么当满足 a2+b2<c2 且 a+b>c 的时候,这个三角形就是一个由三边长为 a, b, c 构成的钝角三角形。

单单讲给你听肯定是不够的,为了表现自己,QQ 小方现在要考考你。

现在 QQ 小方会给你一个包含 3n 个整数的集合,分别是 {2,3,4,?3n,3n+1} ,他想让你将这个集合里面的数分成 n 组,保证每个数都被分到其中一个组,并且每个组恰好有 3 个数。当然,你要保证每组的 3 个数作为边长所构成的三角形是一个钝角三角形。

输入格式

输入仅包含一行一个整数 n (1≤n≤106)。

输出格式

输出应该包含 n 行,每行三个整数,表示分组。

应该满足题目所给的分组要求。

如果有多个可能的解,输出任意一个解。

如果不存在这样的解,请输出 −1。

样例

input

1

output

2 3 4

思路:将所给的数字按大小分成三组,第一个数字从第一组选,其他两个数字按奇偶从另外两个数组选。

例:n=4 ,{2,3,4,5} {6,7,8,9} {10,11,12,13}  => {2,7,8} {3,11,12} {4,6,9} {5,10,13}

代码:

 1 #include<bits/stdc++.h>
 2 using namespace std;
 3 const int N=1e4+5;
 4 #define db double
 5 const db eps=1e-8;
 6
 7 int main()
 8 {
 9     int n;
10     cin>>n;
11     if(n==1) puts("2 3 4");
12     else if(n==2) puts("2 4 5"),puts("3 6 7");
13     else
14     {
15         int m=n+1;
16         if(n&1) printf("%d %d %d\n",n+1,2*n+1,3*n+1),m--;
17         for(int i=2;i<=m;i++){
18             if(i&1) printf("%d %d %d\n",m+3-i,2*n+1+i/2,2*n+(m+1-i/2));
19             else    printf("%d %d %d\n",m+1-i,n+1+i/2,n+1+(m-i/2));
20         }
21     }
22 }

原文地址:https://www.cnblogs.com/mj-liylho/p/10590371.html

时间: 2024-10-11 14:25:37

EOJ Monthly 2019.3A的相关文章

EOJ Monthly 2019.11 E. 数学题(莫比乌斯反演+杜教筛+拉格朗日插值)

传送门 题意: 统计\(k\)元组个数\((a_1,a_2,\cdots,a_n),1\leq a_i\leq n\)使得\(gcd(a_1,a_2,\cdots,a_k,n)=1\). 定义\(f(n,k)\)为满足要求的\(k\)元组个数,现在要求出\(\sum_{i=1}^n f(i,k),1\leq n\leq 10^9,1\leq k\leq 1000\). 思路: 首先来化简一下式子,题目要求的就是: \[ \begin{aligned} &\sum_{i=1}^n\sum_{j=1

EOJ Monthly 2019.2

题解 A 回收卫星 #pragma GCC optimize(2) #pragma GCC optimize(3) #pragma GCC optimize(4) #include<bits/stdc++.h> using namespace std; #define y1 y11 #define fi first #define se second #define pi acos(-1.0) #define LL long long //#define mp make_pair #defin

EOJ Monthly 2019.2 E 中位数 (二分+中位数+dag上dp)

题意: 一张由 n 个点,m 条边构成的有向无环图.每个点有点权 Ai.QQ 小方想知道所有起点为 1 ,终点为 n 的路径中最大的中位数是多少. 一条路径的中位数指的是:一条路径有 n 个点,将这 n 个点的权值从小到大排序后,排在位置 ⌊n2⌋+1 上的权值. 思路(官方题解): 考虑二分答案,我们需要验证路径最大的中位数是否 ≥mid . 我们把所有的点权做 −1/1 变换,即 ≥mid 的点权变为 1 ,否则变为 −1 . 根据题面路径中位数的定义,我们可以发现,如果这条路径的中位数 ≥

EOJ Monthly 2019.2 (based on February Selection) D.进制转换

题目链接: https://acm.ecnu.edu.cn/contest/140/problem/D/ 题目: 思路: 我们知道一个数在某一个进制k下末尾零的个数x就是这个数整除kx,这题要求刚好末尾有m个0,还需要除去高位为0的情况,因此这题答案就是r / kx-(l-1)/kx-(r/kx+1-(l-1)/kx+1). 代码实现如下: 1 #include <set> 2 #include <map> 3 #include <deque> 4 #include &

EOJ Monthly 2019.2 E. 中位数 (二分+dfs)

题目传送门 题意: 在一个n个点,m条边的有向无环图中,求出所有从1到n 的路径的中位数的最大值 一条路径的中位数指的是:一条路径有 n 个点, 将这 n 个点的权值从小到大排序后,排在位置 ⌊n2⌋+1 上的权值. 思路: 看到权值为1~1e9,可以想到用二分答案,然后我们在验证的时候 可以将小于mid的边权设为-1,大于为1这样遍历一遍序列加起来的值 刚好为0 代码: #include<bits/stdc++.h> using namespace std; typedef long lon

[EOJ Monthly] 2019.9

https://acm.ecnu.edu.cn/contest/196/ 这次是ECNU的校内选拔应该会简单一点? 下午嘉定有彩虹,在村(学)子(校)里面转了一圈,学校真大,没什么人,火烧云真美,台风 要 来 了 打开比赛,看看D:要求概率 不会是签到 看看C:这么大的模拟,不是签到 看看A:要么找规律要么SG,然后很长时间都没有人过,可能是SG,算了不管了 后来队里面有人说D是知乎原题 拿到公式开始交 逆元用费马大定理求 敲敲敲... WA WOC??为什么WA,请教了大佬队友,费马大定理会爆

EOJ Monthly 2019.11 B字母游戏

题目见:https://acm.ecnu.edu.cn/contest/231/problem/B/ 卡在第二个点和第十二个点上无数次. 和226打电话,226建议双哈希,然后一发过了....(这是226大佬的力量啊) #include<cstdio> #include<cstring> #include<algorithm> #define maxn 1005 const int mod[2]={19260817,19190504},mul[2]={29,11}; i

EOJ Monthly 2018.1 F 最小OR路径

题目链接 Description 给定一个有 \(n\) 个点和 \(m\) 条边的无向图,其中每一条边 \(e_i\) 都有一个权值记为 \(w_i\) . 对于给出的两个点 \(a\) 和 \(b\) ,求一条 \(a\) 到 \(b\) 的路径,使得路径上的边权的 \(OR\)(位或)和最小,输出这个值.(也就是说,如果将路径看做边的集合 \(\{e_1,e_2,-,e_k\}\),那么这条路径的代价为 \(w_1\ OR\ w_2\ OR\ -\ OR\ w_k\),现在求一条路径使得其

【EOJ Monthly 2018.2 (Good bye 2017)】

23333333333333333 由于情人节要回家,所以就先只放代码了. 此题是与我胖虎过不去. [E. 出老千的 xjj] #include<cstdio> #include<cstdlib> #include<cstring> #include<iostream> #include<algorithm> using namespace std; const int maxn=3000000; #define ll long long int