C# 图片人脸识别

此程序基于 虹软人脸识别进行的开发

前提条件从虹软官网下载获取ArcFace引擎应用开发包,及其对应的激活码(App_id, SDK_key)
将获取到的开发包导入到您的应用中

App_id与SDK_key是在初始化的时候需要使用基本类型所有基本类型在平台库中有定义。 定义规则是在ANSIC 中的基本类型前加上字母“M”同时将类型的第一个字母改成大写。例如“long” 被定义成“MLong”数据结构与枚举

AFR_FSDK_FACEINPUT
描述: 脸部信息
定义
typedef struct{
MRECT rcFace;
AFR_FSDK_OrientCode lOrient;
} AFR_FSDK_FACEINPUT, *LPAFR_FSDK_FACEINPUT;

成员描述
rcFace脸部矩形框信息
lOrient脸部旋转角度
AFR_FSDK_FACEMODEL
描述: 脸部特征信息
定义
typedef struct{
MByte *pbFeature;
MInt32 lFeatureSize;
} AFR_FSDK_FACEMODEL, *LPAFR_FSDK_FACEMODEL;

成员描述
pbFeature提取到的脸部特征
lFeatureSize特征信息长度
AFR_FSDK_VERSION
描述: 引擎版本信息
定义
typedef struct{
MInt32 lCodebase;
MInt32 lMajor;
MInt32 lMinor;
MInt32 lBuild;
MInt32 lFeatureLevel;
MPChar Version;
MPChar BuildDate;
MPChar CopyRight;
} AFR_FSDK_VERSION, *LPAFR_FSDK_VERSION;

成员描述
lCodebase代码库版本号
lMajor主版本号
lMinor次版本号
lBuild编译版本号,递增
lFeatureLevel特征库版本号
Version字符串形式的版本号
BuildDate编译时间
CopyRight版权

枚举AFR_FSDK_ORIENTCODE
描述: 基于逆时针的脸部方向枚举值
定义
enum AFR_FSDK_ORIENTCODE{
AFR_FSDK_FOC_0 = 0x1,
AFR_FSDK_FOC_90 = 0x2,
AFR_FSDK_FOC_270 = 0x3,
AFR_FSDK_FOC_180 = 0x4,
AFR_FSDK_FOC_30 = 0x5,
AFR_FSDK_FOC_60 = 0x6,
AFR_FSDK_FOC_120 = 0x7,
AFR_FSDK_FOC_150 = 0x8,
AFR_FSDK_FOC_210 = 0x9,
AFR_FSDK_FOC_240 = 0xa,
AFR_FSDK_FOC_300 = 0xb,
AFR_FSDK_FOC_330 = 0xc
};

成员描述
AFR_FSDK_FOC_00 度
AFR_FSDK_FOC_9090度
AFR_FSDK_FOC_270270度
AFR_FSDK_FOC_180180度
AFR_FSDK_FOC_3030度
AFR_FSDK_FOC_6060度
AFR_FSDK_FOC_120120度
AFR_FSDK_FOC_150150度
AFR_FSDK_FOC_210210度
AFR_FSDK_FOC_240240度
AFR_FSDK_FOC_300300度
AFR_FSDK_FOC_330330度

支持的颜色格式
描述: 颜色格式及其对齐规则

定义
ASVL_PAF_I420 8-bit Y层,之后是8-bit的2x2 采样的U层和V层
ASVL_PAF_YUYV Y0, U0, Y1, V0
ASVL_PAF_RGB24_B8G8R8 BGR24, B8G8R8

API ReferenceAFR_FSDK_InitialEngine
描述: 初始化引擎参数
原型
MRESULT AFR_FSDK_InitialEngine(
MPChar AppId,
MPChar SDKKey,
Mbyte *pMem,
MInt32 lMemSize,
MHandle *phEngine
);

参数
AppId[in] 用户申请SDK时获取的App Id
SDKKey[in] 用户申请SDK时获取的SDK Key
pMem[in] 分配给引擎使用的内存地址
lMemSize[in] 分配给引擎使用的内存大小
phEngine[out] 引擎handle

返回值: 成功返回MOK,否则返回失败code。失败codes如下所列:
MERR_INVALID_PARAM 参数输入非法
MERR_NO_MEMORY 内存不足AFR_FSDK_ExtractFRFeature
描述: 获取脸部特征参数
原型
MRESULT AFR_FSDK_ExtractFRFeature (
MHandle hEngine,
LPASVLOFFSCREEN pInputImage,
LPAFR_FSDK_FACEINPUT pFaceRes,
LPAFR_FSDK_FACEMODEL pFaceModels
);

参数

hEngine[in] 引擎handle
pInputImage[in] 输入的图像数据
pFaceRes[in] 已检测到的脸部信息
pFaceModels[out] 提取的脸部特征信息
返回值: 成功返回MOK,否则返回失败code。失败codes如下所列:
MERR_INVALID_PARAM 参数输入非法
MERR_NO_MEMORY 内存不足AFR_FSDK_FacePairMatching
描述: 脸部特征比较
原型
MRESULT AFR_FSDK_FacePairMatching(
MHandle hEngine,
AFR_FSDK_FACEMODEL *reffeature,
AFR_FSDK_FACEMODEL *probefeature,
MFloat *pfSimilScore
);

参数
hEngine[in] 引擎handle
reffeature[in] 已有脸部特征信息
probefeature[in] 被比较的脸部特征信息
pfSimilScore[out] 脸部特征相似程度数值
返回值: 成功返回MOK,否则返回失败code。失败codes如下所列:
MERR_INVALID_PARAM 参数输入非法
MERR_NO_MEMORY 内存不足
AFR_FSDK_UninitialEngine
描述: 销毁引擎,释放相应资源
原型
MRESULT AFR_FSDK_UninitialEngine(
MHandle hEngine
);

参数
hEngine[in] 引擎handle
返回值: 成功返回MOK,否则返回失败code。失败codes如下所列:
MERR_INVALID_PARAM 参数输入非法
AFR_FSDK_GetVersion
描述: 获取SDK版本信息参数
原型
const AFR_FSDK_VERSION * AFR_FSDK_GetVersion(
MHandle hEngine
);

相关事例代码

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace ArcsoftFace
{

public struct AFD_FSDK_FACERES
{
public int nFace; // number of faces detected

public IntPtr rcFace; // The bounding box of face

public IntPtr lfaceOrient; // the angle of each face
}

}

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace ArcsoftFace
{
public struct AFR_FSDK_FACEINPUT
{
public MRECT rcFace;	// The bounding box of face

public int lfaceOrient; // The orientation of face
}
}

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace ArcsoftFace
{
public struct AFR_FSDK_FACEMODEL
{
public IntPtr pbFeature;	// The extracted features

public int lFeatureSize;	// The size of pbFeature
}
}

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace ArcsoftFace
{
public struct AFR_FSDK_Version
{
public int lCodebase;
public int lMajor;
public int lMinor;
public int lBuild;
public int lFeatureLevel;
public IntPtr Version;
public IntPtr BuildDate;
public IntPtr CopyRight;
}
}

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Runtime.InteropServices;

namespace ArcsoftFace
{

public class AmFaceVerify
{
/**
* 初始化人脸检测引擎
* @return 初始化人脸检测引擎
*/
[DllImport("libarcsoft_fsdk_face_detection.dll", CallingConvention = CallingConvention.Cdecl)]
public static extern int AFD_FSDK_InitialFaceEngine(string appId, string sdkKey, IntPtr pMem, int lMemSize, ref IntPtr pEngine, int iOrientPriority, int nScale, int nMaxFaceNum);

/**
* 获取人脸检测 SDK 版本信息
* @return 获取人脸检测SDK 版本信息
*/
[DllImport("libarcsoft_fsdk_face_detection.dll", CallingConvention = CallingConvention.Cdecl)]
public static extern IntPtr AFD_FSDK_GetVersion(IntPtr pEngine);

/**
* 根据输入的图像检测出人脸位置,一般用于静态图像检测
* @return 人脸位置
*/
[DllImport("libarcsoft_fsdk_face_detection.dll", CallingConvention = CallingConvention.Cdecl)]
public static extern int AFD_FSDK_StillImageFaceDetection(IntPtr pEngine, IntPtr offline, ref IntPtr faceRes);

/**
* 初始化人脸识别引擎
* @return 初始化人脸识别引擎
*/
[DllImport("libarcsoft_fsdk_face_recognition.dll", CallingConvention = CallingConvention.Cdecl)]
public static extern int AFR_FSDK_InitialEngine(string appId, string sdkKey, IntPtr pMem, int lMemSize, ref IntPtr pEngine);

/**
* 获取人脸识别SDK 版本信息
* @return 获取人脸识别SDK 版本信息
*/
[DllImport("libarcsoft_fsdk_face_recognition.dll", CallingConvention = CallingConvention.Cdecl)]
public static extern IntPtr AFR_FSDK_GetVersion(IntPtr pEngine);

/**
* 提取人脸特征
* @return 提取人脸特征
*/
[DllImport("libarcsoft_fsdk_face_recognition.dll", CallingConvention = CallingConvention.Cdecl)]
public static extern int AFR_FSDK_ExtractFRFeature(IntPtr pEngine, IntPtr offline, IntPtr faceResult, IntPtr localFaceModels);

/**
* 获取相似度
* @return 获取相似度
*/
[DllImport("libarcsoft_fsdk_face_recognition.dll", CallingConvention = CallingConvention.Cdecl)]
public static extern int AFR_FSDK_FacePairMatching(IntPtr pEngine, IntPtr faceModels1, IntPtr faceModels2, ref float fSimilScore);

#region delete
///**
// * 创建人脸检测引擎
// * @param [in] model_path 模型文件夹路径
// * @param [out] engine 创建的人脸检测引擎
// * @return =0 表示成功,<0 表示错误码。
// */
//[DllImport("AmFaceDet.dll", CallingConvention = CallingConvention.Cdecl)]
//public static extern int AmCreateFaceDetectEngine(string modelPath, ref IntPtr faceDetectEngine);

///**
// * 创建人脸识别引擎
// * @param [in] model_path 模型文件夹路径
// * @param [out] engine 创建的人脸识别引擎
// * @return =0 表示成功,<0 表示错误码。
// */
//[DllImport("AmFaceRec.dll", CallingConvention = CallingConvention.Cdecl)]
//public static extern int AmCreateFaceRecogniseEngine(string modelPath, ref IntPtr facRecogniseeEngine);

///**
// * 创建人脸比对别引擎
// * @param [in] model_path 模型文件夹路径
// * @param [out] engine 创建的人脸比对引擎
// * @return =0 表示成功,<0 表示错误码。
// */
//[DllImport("AmFaceCompare.dll", CallingConvention = CallingConvention.Cdecl)]
//public static extern int AmCreateFaceCompareEngine(ref IntPtr facCompareEngine);

///**
// * 设置人脸引擎参数
// * @param [in] engine 人脸引擎
// * @param [in] param 人脸参数
// */
//[DllImport("AmFaceDet.dll", CallingConvention = CallingConvention.Cdecl)]
//public static extern void AmSetParam(IntPtr faceDetectEngine, [MarshalAs(UnmanagedType.LPArray)] [In] TFaceParams[] setFaceParams);

///**
// * 人脸检测
// * @param [in] engine 人脸引擎
// * @param [in] bgr 图像数据,BGR格式
// * @param [in] width 图像宽度
// * @param [in] height 图像高度
// * @param [in] pitch 图像数据行字节数
// * @param [in,out] faces 人脸结构体数组,元素个数应等于期望检测人脸个数
// * @param [in] face_count 期望检测人脸个数
// * @return >=0 表示实际检测到的人脸数量,<0 表示错误码。
// */
//[DllImport("AmFaceDet.dll", CallingConvention = CallingConvention.Cdecl)]
//public static extern int AmDetectFaces(IntPtr faceDetectEngine, [MarshalAs(UnmanagedType.LPArray)] [In] byte[] image, int width, int height, int pitch, [MarshalAs(UnmanagedType.LPArray)] [In][Out] TAmFace[] faces, int face_count);

///**
// * 抽取人脸特征
// * @param [in] engine 人脸引擎
// * @param [in] bgr 图像数据,BGR格式
// * @param [in] width 图像宽度
// * @param [in] height 图像高度
// * @param [in] pitch 图像数据行字节数
// * @param [in] face 人脸结构体
// * @param [out] feature 人脸特征
// * @return =0 表示成功,<0 表示错误码。
// */
//[DllImport("AmFaceRec.dll", CallingConvention = CallingConvention.Cdecl)]
////public static extern int AmExtractFeature(IntPtr faceEngine, [MarshalAs(UnmanagedType.LPArray)] [In] byte[] image, int width, int height, int pitch, [MarshalAs(UnmanagedType.LPArray)] [In] TAmFace[] faces, ref byte[] feature);
//public static extern int AmExtractFeature(IntPtr facRecogniseeEngine, [MarshalAs(UnmanagedType.LPArray)] [In] byte[] image, int width, int height, int pitch, [MarshalAs(UnmanagedType.LPArray)] [In] TAmFace[] faces, [MarshalAs(UnmanagedType.LPArray)] [Out] byte[] feature);

///**
// * 比对两个人脸特征相似度
// * @param [in] engine 人脸引擎
// * @param [in] feature1 人脸特征1
// * @param [in] feature2 人脸特征2
// * @return 人脸相似度
// */
//[DllImport("AmFaceCompare.dll", CallingConvention = CallingConvention.Cdecl)]
//public static extern float AmCompare(IntPtr facCompareEngine, byte[] feature1, byte[] feature2);
#endregion
}
}

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Runtime.InteropServices;

namespace ArcsoftFace
{
public struct ASVLOFFSCREEN
{
public int u32PixelArrayFormat;

public int i32Width;

public int i32Height;

[MarshalAs(UnmanagedType.ByValArray, SizeConst = 4)]
public IntPtr[] ppu8Plane;

[MarshalAs(UnmanagedType.ByValArray, SizeConst = 4)]
public int[] pi32Pitch;
}
}

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace ArcsoftFace
{
public struct MRECT
{
public int left;
public int top;
public int right;
public int bottom;
}
}

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Windows.Forms;
using System.Runtime.InteropServices;
using System.Drawing.Imaging;
using System.Diagnostics;
using System.Threading;
using ArcsoftFace;

namespace ArcsoftFace
{

public partial class Form1 : Form
{
byte[] firstFeature;

byte[] secondFeature;

//人脸检测引擎
IntPtr detectEngine = IntPtr.Zero;

//人脸识别引擎
IntPtr regcognizeEngine = IntPtr.Zero;

//拖拽线程
private Thread threadMultiExec;

//构造函数
public Form1()
{
InitializeComponent();
}

//把图片转成byte[]
private byte[] getBGR(Bitmap image, ref int width, ref int height, ref int pitch)
{
//Bitmap image = new Bitmap(imgPath);

const PixelFormat PixelFormat = PixelFormat.Format24bppRgb;

BitmapData data = image.LockBits(new Rectangle(0, 0, image.Width, image.Height), ImageLockMode.ReadOnly, PixelFormat);

IntPtr ptr = data.Scan0;

int ptr_len = data.Height * Math.Abs(data.Stride);

byte[] ptr_bgr = new byte[ptr_len];

Marshal.Copy(ptr, ptr_bgr, 0, ptr_len);

width = data.Width;

height = data.Height;

pitch = Math.Abs(data.Stride);

int line = width * 3;

int bgr_len = line * height;

byte[] bgr = new byte[bgr_len];

for (int i = 0; i < height; ++i)
{
Array.Copy(ptr_bgr, i * pitch, bgr, i * line, line);
}

pitch = line;

image.UnlockBits(data);

return bgr;
}

//选择第一张照片
private void button4_Click(object sender, EventArgs e)
{
OpenFileDialog openFile = new OpenFileDialog();

openFile.Filter = "图片文件|*.bmp;*.jpg;*.jpeg;*.png|所有文件|*.*;";

openFile.Multiselect = false;

openFile.FileName = "";

if (openFile.ShowDialog() == DialogResult.OK)
{
this.pictureBox1.Image = null;

Image image = Image.FromFile(openFile.FileName);

this.pictureBox1.Image = new Bitmap(image);

image.Dispose();

firstFeature = detectAndExtractFeature(this.pictureBox1.Image, 1);
}
}

//选择第二张照片
private void button2_Click(object sender, EventArgs e)
{
OpenFileDialog openFile = new OpenFileDialog();

openFile.Filter = "图片文件|*.bmp;*.jpg;*.jpeg;*.png|所有文件|*.*;";

openFile.Multiselect = false;

openFile.FileName = "";

if (openFile.ShowDialog() == DialogResult.OK)
{
this.pictureBox2.Image = null;

Image image = Image.FromFile(openFile.FileName);

this.pictureBox2.Image = new Bitmap(image);

image.Dispose();

secondFeature = detectAndExtractFeature(this.pictureBox2.Image, 2);
}

}

//提取识别出的人脸
public static Bitmap CutFace(Bitmap srcImage, int StartX, int StartY, int iWidth, int iHeight)
{
if (srcImage == null)
{
return null;
}

int w = srcImage.Width;

int h = srcImage.Height;

if (StartX >= w || StartY >= h)
{
return null;
}
if (StartX + iWidth > w)
{
iWidth = w - StartX;
}
if (StartY + iHeight > h)
{
iHeight = h - StartY;
}
try
{
Bitmap bmpOut = new Bitmap(iWidth, iHeight, PixelFormat.Format24bppRgb);

Graphics g = Graphics.FromImage(bmpOut);

g.DrawImage(srcImage, new Rectangle(0, 0, iWidth, iHeight), new Rectangle(StartX, StartY, iWidth, iHeight), GraphicsUnit.Pixel);

g.Dispose();

return bmpOut;
}
catch
{
return null;
}
}

//获取相似度
private void button3_Click(object sender, EventArgs e)
{
float similar = 0f;

AFR_FSDK_FACEMODEL localFaceModels = new AFR_FSDK_FACEMODEL();

IntPtr firstFeaturePtr = Marshal.AllocHGlobal(firstFeature.Length);

Marshal.Copy(firstFeature, 0, firstFeaturePtr, firstFeature.Length);

localFaceModels.lFeatureSize = firstFeature.Length;

localFaceModels.pbFeature = firstFeaturePtr;

IntPtr secondFeaturePtr = Marshal.AllocHGlobal(secondFeature.Length);

Marshal.Copy(secondFeature, 0, secondFeaturePtr, secondFeature.Length);

AFR_FSDK_FACEMODEL localFaceModels2 = new AFR_FSDK_FACEMODEL();

localFaceModels2.lFeatureSize = secondFeature.Length;

localFaceModels2.pbFeature = secondFeaturePtr;

IntPtr firstPtr = Marshal.AllocHGlobal(Marshal.SizeOf(localFaceModels));

Marshal.StructureToPtr(localFaceModels, firstPtr, false);

IntPtr secondPtr = Marshal.AllocHGlobal(Marshal.SizeOf(localFaceModels2));

Marshal.StructureToPtr(localFaceModels2, secondPtr, false);

Stopwatch stopwatch = new Stopwatch();

stopwatch.Start();

int result = AmFaceVerify.AFR_FSDK_FacePairMatching(regcognizeEngine, firstPtr, secondPtr, ref similar);

stopwatch.Stop();

setControlText(this.label1, "相似度:" + similar.ToString() + " 耗时:" + stopwatch.ElapsedMilliseconds.ToString() + "ms");

//this.label1.Text = "相似度:" + similar.ToString() + " 耗时:" + stopwatch.ElapsedMilliseconds.ToString() + "ms";

localFaceModels = new AFR_FSDK_FACEMODEL();

Marshal.FreeHGlobal(firstFeaturePtr);

Marshal.FreeHGlobal(secondFeaturePtr);

Marshal.FreeHGlobal(firstPtr);

Marshal.FreeHGlobal(secondPtr);

localFaceModels2 = new AFR_FSDK_FACEMODEL();
}

//检测人脸、提取特征
private byte[] detectAndExtractFeature(Image imageParam, int firstSecondFlg)
{
byte[] feature = null;

try
{
Console.WriteLine();

Console.WriteLine("############### Face Detect Start #########################");

int width = 0;

int height = 0;

int pitch = 0;

Bitmap bitmap = new Bitmap(imageParam);

byte[] imageData = getBGR(bitmap, ref width, ref height, ref pitch);

//GCHandle hObject = GCHandle.Alloc(imageData, GCHandleType.Pinned);

//IntPtr imageDataPtr = hObject.AddrOfPinnedObject();

IntPtr imageDataPtr = Marshal.AllocHGlobal(imageData.Length);

Marshal.Copy(imageData, 0, imageDataPtr, imageData.Length);

ASVLOFFSCREEN offInput = new ASVLOFFSCREEN();

offInput.u32PixelArrayFormat = 513;

offInput.ppu8Plane = new IntPtr[4];

offInput.ppu8Plane[0] = imageDataPtr;

offInput.i32Width = width;

offInput.i32Height = height;

offInput.pi32Pitch = new int[4];

offInput.pi32Pitch[0] = pitch;

AFD_FSDK_FACERES faceRes = new AFD_FSDK_FACERES();

IntPtr offInputPtr = Marshal.AllocHGlobal(Marshal.SizeOf(offInput));

Marshal.StructureToPtr(offInput, offInputPtr, false);

IntPtr faceResPtr = Marshal.AllocHGlobal(Marshal.SizeOf(faceRes));

//Marshal.StructureToPtr(faceRes, faceResPtr, false);

Console.WriteLine("StartTime:{0}", DateTime.Now.ToString("yyyy/MM/dd HH:mm:ss.ffff"));

Stopwatch watchTime = new Stopwatch();

watchTime.Start();
//人脸检测
int detectResult = AmFaceVerify.AFD_FSDK_StillImageFaceDetection(detectEngine, offInputPtr, ref faceResPtr);

watchTime.Stop();

if (firstSecondFlg == 1)
{
setControlText(this.label5, String.Format("检测耗时:{0}ms", watchTime.ElapsedMilliseconds));

//this.label5.Text = String.Format("检测耗时:{0}ms", watchTime.ElapsedMilliseconds);
}
else if (firstSecondFlg == 2)
{
setControlText(this.label2, String.Format("检测耗时:{0}ms", watchTime.ElapsedMilliseconds));

//this.label2.Text = String.Format("检测耗时:{0}ms", watchTime.ElapsedMilliseconds);
}

object obj = Marshal.PtrToStructure(faceResPtr, typeof(AFD_FSDK_FACERES));

faceRes = (AFD_FSDK_FACERES)obj;

Console.WriteLine(" Face Count:{0}", faceRes.nFace);

for (int i = 0; i < faceRes.nFace; i++)
{
MRECT rect = (MRECT)Marshal.PtrToStructure(faceRes.rcFace + Marshal.SizeOf(typeof(MRECT)) * i, typeof(MRECT));

int orient = (int)Marshal.PtrToStructure(faceRes.lfaceOrient + Marshal.SizeOf(typeof(int)) * i, typeof(int));

if (i == 0)
{
Image image = CutFace(bitmap, rect.left, rect.top, rect.right - rect.left, rect.bottom - rect.top);

if (firstSecondFlg == 1)
{
this.pictureBox3.Image = image;
}
else if (firstSecondFlg == 2)
{
this.pictureBox4.Image = image;
}
}

Console.WriteLine(" left:{0} top:{1} right:{2} bottom:{3} orient:{4}", rect.left, rect.top, rect.right, rect.bottom, orient);
}

Console.WriteLine(" EndTime:{0}", DateTime.Now.ToString("yyyy/MM/dd HH:mm:ss.ffff"));

Console.WriteLine("############### Face Detect End #########################");

if (faceRes.nFace > 0)
{
Console.WriteLine();

Console.WriteLine("############### Face Recognition Start #########################");

AFR_FSDK_FACEINPUT faceResult = new AFR_FSDK_FACEINPUT();

int orient = (int)Marshal.PtrToStructure(faceRes.lfaceOrient, typeof(int));

faceResult.lfaceOrient = orient;

faceResult.rcFace = new MRECT();

MRECT rect = (MRECT)Marshal.PtrToStructure(faceRes.rcFace, typeof(MRECT));

faceResult.rcFace = rect;

IntPtr faceResultPtr = Marshal.AllocHGlobal(Marshal.SizeOf(faceResult));

Marshal.StructureToPtr(faceResult, faceResultPtr, false);

AFR_FSDK_FACEMODEL localFaceModels = new AFR_FSDK_FACEMODEL();

IntPtr localFaceModelsPtr = Marshal.AllocHGlobal(Marshal.SizeOf(localFaceModels));

//Marshal.StructureToPtr(localFaceModels, localFaceModelsPtr, false);

watchTime.Start();

int extractResult = AmFaceVerify.AFR_FSDK_ExtractFRFeature(regcognizeEngine, offInputPtr, faceResultPtr, localFaceModelsPtr);

Marshal.FreeHGlobal(faceResultPtr);

Marshal.FreeHGlobal(offInputPtr);

watchTime.Stop();

if (firstSecondFlg == 1)
{
setControlText(this.label3, String.Format("抽取特征耗时:{0}ms", watchTime.ElapsedMilliseconds));

//this.label3.Text = String.Format("抽取特征耗时:{0}ms", watchTime.ElapsedMilliseconds);
}
else if (firstSecondFlg == 2)
{
setControlText(this.label4, String.Format("抽取特征耗时:{0}ms", watchTime.ElapsedMilliseconds));

//this.label4.Text = String.Format("抽取特征耗时:{0}ms", watchTime.ElapsedMilliseconds);
}

object objFeature = Marshal.PtrToStructure(localFaceModelsPtr, typeof(AFR_FSDK_FACEMODEL));

Marshal.FreeHGlobal(localFaceModelsPtr);

localFaceModels = (AFR_FSDK_FACEMODEL)objFeature;

feature = new byte[localFaceModels.lFeatureSize];

Marshal.Copy(localFaceModels.pbFeature, feature, 0, localFaceModels.lFeatureSize);

//localFaceModels = new AFR_FSDK_FACEMODEL();

Console.WriteLine("############### Face Recognition End #########################");

}

bitmap.Dispose();

imageData = null;

Marshal.FreeHGlobal(imageDataPtr);

offInput = new ASVLOFFSCREEN();

faceRes = new AFD_FSDK_FACERES();

//Marshal.FreeHGlobal(faceResPtr);
}
catch (Exception e)
{
LogHelper.WriteErrorLog("detect", e.Message + "\n" + e.StackTrace);
}
return feature;
}

//初始化
private void Form1_Load(object sender, EventArgs e)
{
#region 初始化人脸检测引擎

int detectSize = 40 * 1024 * 1024;

IntPtr pMem = Marshal.AllocHGlobal(detectSize);

//1-1
//string appId = "4tnYSJ68e8wztSo4Cf7WvbyMZduHwpqtThAEM3obMWbE";

//1-1
//string sdkKey = "Cgbaq34izc8PA2Px26x8qqWTQn2P5vxijaWKdUrdCwYT";

//1-n
string appId = "8b4R2gvcoFQXKbC4wGtnYcqsa9Bd3FLiN3VWDFtJqcnB";

//1-n
string sdkKey = "A5Km3QjZKGuakWRmC2pSWTuNzbNbaSCnj5fFtjBBcdxm";

//人脸检测引擎初始化

// IntPtr aaa= AFD_FSDKLibrary.AFD_FSDK_InitialFaceEngine(appId, sdkKey, pMem, detectSize, ref detectEngine, 5, 50, 1);
int retCode = AmFaceVerify.AFD_FSDK_InitialFaceEngine(appId, sdkKey, pMem, detectSize, ref detectEngine, 5, 50, 1);
//获取人脸检测引擎版本
IntPtr versionPtr = AmFaceVerify.AFD_FSDK_GetVersion(detectEngine);

AFR_FSDK_Version version = (AFR_FSDK_Version)Marshal.PtrToStructure(versionPtr, typeof(AFR_FSDK_Version));

Console.WriteLine("lCodebase:{0} lMajor:{1} lMinor:{2} lBuild:{3} Version:{4} BuildDate:{5} CopyRight:{6}", version.lCodebase, version.lMajor, version.lMinor, version.lBuild, Marshal.PtrToStringAnsi(version.Version), Marshal.PtrToStringAnsi(version.BuildDate), Marshal.PtrToStringAnsi(version.CopyRight));

//Marshal.FreeHGlobal(versionPtr);

#endregion

#region 初始化人脸识别引擎

int recognizeSize = 40 * 1024 * 1024;

IntPtr pMemDetect = Marshal.AllocHGlobal(recognizeSize);

//1-1
//string appIdDetect = "4tnYSJ68e8wztSo4Cf7WvbyMZduHwpqtThAEM3obMWbE";

//1-1
//string sdkKeyDetect = "Cgbaq34izc8PA2Px26x8qqWaaBHbPD7wWMcTU6xe8VRo";

//1-n
string appIdDetect = "8b4R2gvcoFQXKbC4wGtnYcqsa9Bd3FLiN3VWDFtJqcnB";

//1-n
string sdkKeyDetect = "A5Km3QjZKGuakWRmC2pSWTuW9zdndn5EkVDo4LceRxLU";

//人脸识别引擎初始化
retCode = AmFaceVerify.AFR_FSDK_InitialEngine(appIdDetect, sdkKeyDetect, pMemDetect, recognizeSize, ref regcognizeEngine);

//获取人脸识别引擎版本
IntPtr versionPtrDetect = AmFaceVerify.AFR_FSDK_GetVersion(regcognizeEngine);

AFR_FSDK_Version versionDetect = (AFR_FSDK_Version)Marshal.PtrToStructure(versionPtrDetect, typeof(AFR_FSDK_Version));

Console.WriteLine("lCodebase:{0} lMajor:{1} lMinor:{2} lBuild:{3} lFeatureLevel:{4} Version:{5} BuildDate:{6} CopyRight:{7}", versionDetect.lCodebase, versionDetect.lMajor, versionDetect.lMinor, versionDetect.lBuild, versionDetect.lFeatureLevel, Marshal.PtrToStringAnsi(versionDetect.Version), Marshal.PtrToStringAnsi(versionDetect.BuildDate), Marshal.PtrToStringAnsi(versionDetect.CopyRight));

#endregion
}

//拖拽事件
private void Form1_DragDrop(object sender, DragEventArgs e)
{
// Extract the data from the DataObject-Container into a string list
string[] fileList = (string[])e.Data.GetData(DataFormats.FileDrop, false);

if (fileList.Length >= 2)
{
this.threadMultiExec = new Thread(new ParameterizedThreadStart(multiCompare));

this.threadMultiExec.Start(new object[] { fileList });

this.threadMultiExec.IsBackground = true;
}

}

private void Form1_DragEnter(object sender, DragEventArgs e)
{
// Check if the Dataformat of the data can be accepted
// (we only accept file drops from Explorer, etc.)
if (e.Data.GetDataPresent(DataFormats.FileDrop))
{
e.Effect = DragDropEffects.Copy; // Okay
}
else
{
e.Effect = DragDropEffects.None; // Unknown data, ignore it
}
}

//多线程设置PictureBox的图像
private void setPictureBoxControlImage(PictureBox control, Bitmap value)
{
control.Invoke(new Action<PictureBox, Bitmap>((ct, v) => { ct.Image = v; }), new object[] { control, value });
}

//多线程设置控件的文本
private void setControlText(Control control, string value)
{
control.Invoke(new Action<Control, string>((ct, v) => { ct.Text = v; }), new object[] { control, value });
}

//比对多个图片
private void multiCompare(object args)
{
object[] objs = args as object[];

string[] fileList = (string[])objs[0];

for (int i = 0; i < fileList.Length; i++)
{

Image image = Image.FromFile(fileList[i]);

//this.pictureBox1.Image = null;

//this.pictureBox1.Image = new Bitmap(image);

setPictureBoxControlImage(this.pictureBox1, new Bitmap(image));

firstFeature = detectAndExtractFeature(image, 1);

image.Dispose();

if (firstFeature == null)
{

continue;
}

if (i + 1 >= fileList.Length)
{

continue;
}

Image image2 = Image.FromFile(fileList[++i]);

//this.pictureBox2.Image = null;

// this.pictureBox2.Image = new Bitmap(image2);

setPictureBoxControlImage(this.pictureBox2, new Bitmap(image2));

secondFeature = detectAndExtractFeature(image2, 2);

image2.Dispose();

if (secondFeature == null)
{

continue;
}

button3_Click(null, null);

setControlText(this.label6, "正在处理:" + (i + 1).ToString());

//label6.Text = "正在处理:" + (i + 1).ToString();

//this.Update();

Thread.Sleep(10);

}

}

}
}

```

  

USB视频 动态画框 源码下载地址
https://download.csdn.net/download/zhang1244/10368237
运行效果地址
https://download.csdn.net/download/zhang1244/10368222
普通人脸照片进行关键点提取以及相关对比相似度

https://download.csdn.net/download/zhang1244/10368197

运行效果地址

https://download.csdn.net/download/zhang1244/10368181

原文地址:https://www.cnblogs.com/Zzz-/p/10594226.html

时间: 2024-10-03 09:25:10

C# 图片人脸识别的相关文章

Android静态图片人脸识别的完整demo(附完整源码)

Demo功能:利用android自带的人脸识别进行识别,标记出眼睛和人脸位置.点击按键后进行人脸识别,完毕后显示到imageview上. 第一部分:布局文件activity_main.xml [html] view plaincopyprint? <RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android" xmlns:tools="http://schemas.android.co

用opencv做的静态图片人脸识别

这次给大家分享一个图像识别方面的小项目,主要功能是识别图像中的人脸并根据人脸在图片库找出同一个与它最相似的图片,也就是辨别不同的人. 环境:VS2013+opencv2.4.13 主要是算法:opencv中人脸识别算法(截取人脸)+哈希算法(辨别人脸) opencv中人脸识别算法:这个很常用,就是普通的人脸识别算法,直接上代码: void IdentifyFace(Mat image) //识别并截取人脸 { CascadeClassifier ccf; ccf.load(xmlPath); v

Opencv 入门学习之图片人脸识别

读入图片,算法检测,画出矩形框 import cv2 from PIL import Image,ImageDraw import os def detectFaces(image_name): img = cv2.imread(image_name) face_cascade = cv2.CascadeClassifier('../opencv-2.4.9/data/haarcascades/haarcascade_frontalface_default.xml') if img.ndim==

IOS 通过摄像头读取每一帧的图片,并且做识别做人脸识别(swift)

最近帮别人做一个项目,主要是使用摄像头做人脸识别 github地址:https://github.com/qugang/AVCaptureVideoTemplate 要使用IOS的摄像头,需要使用AVFoundation 库,库里面的东西我就不介绍. 启动摄像头需要使用AVCaptureSession 类. 然后得到摄像头传输的每一帧数据,需要使用AVCaptureVideoDataOutputSampleBufferDelegate 委托. 首先在viewDidLoad 里添加找摄像头设备的代

jQuery 人脸识别插件,支持图片和视频

jQuery Face Detection 是一款人脸检测插件,能够检测到图片,视频和画布中的人脸坐标.它跟踪人脸并输出人脸模型的坐标位置为一个数组.我们相信,面部识别技术能够给我们的 Web 应用带来各种可能性,创造出互动的,有趣的功能. 注:人脸识别,是基于人的脸部特征信息进行身份识别的一种生物识别技术.用摄像机或摄像头采集含有人脸的图像或视频流,并自动在图像中检测和跟踪人脸,进而对检测到的人脸进行脸部的一系列相关技术,通常也叫做人像识别.面部识别. 效果演示     插件下载 如何使用:

【黑马Android】(10)绑定的方式调用服务的方法/图片的各种操作/人脸识别

绑定的方式调用服务的方法 服务的生命周期: 一.采用start的方式开启服务 生命周期如下: onStart()过时了 开启服务:onCreate()--> onStartCommand() ---> onDestory(); 如果服务已经开启,不会重复的执行onCreate(), 而是会调用onStart()和 onStartCommand(); 服务停止的时候onDestory(). 服务只会被停止一次 二.服务还有一种开启方式,绑定的方式开启服务. onCreate()--->on

Python3使用百度人脸识别接口识别高颜值妹子图片

一.在百度云平台创建应用 为什么要到百度云平台创建应用,首先来说是为了获取获取access_token时需要的API Key和Secret Key 至于为什么需要API Key和Secret Key才能获取access_token,应该一是为了推广一下百度云二是为了获取一些统计数据.微信苹果要你们搞得,度娘就不能要你们搞得?不要纠结 1.访问百度AI开放 平台:http://ai.baidu.com/ 2."产品服务"----"人脸检测" 3. "立即使用

人脸识别关键点/五官定位效果分析---点击图片提供下载测试,欢迎提供建议

########################################### 1:安装好了之后,打开手机网络(只是验证网络时间),并不发生数据交互. 2:如果打开黑屏,是由于安卓手机版本太高,需要手动打开摄像头权限. ########################################## 利用神经网络开发的五官定位/人脸识别关键点的开发包,跟踪效果和切合 度还是不错的,但是一定存在很多大牛,希望你们多多分享下你们自己的经 验,大家一起进步. ###############

【Python】使用Face++的人脸识别detect API进行本地图片情绪识别并存入excel

准备工作 首先,需要在Face++的主页注册一个账号,在控制台去获取API Key和API Secret. 然后在本地文件夹准备好要进行情绪识别的图片/相片. 代码 介绍下所使用的第三方库 --urllib2是使用各种协议完成打开url的一个库 --time是对时间进行处理的一个库,以下代码中其实就使用了sleep()和localtime()两个函数,sleep()是用来让程序暂停几秒的,localtime()是格式化时间戳为本地的时间 --xlwt是对excel进行写入操作的一个库 --os是