局部敏感哈希(LSH)之simhash和minhash

minhash

1. 把文档A分词形成分词向量L
2. 使用K个hash函数,然后每个hash将L里面的分词分别进行hash,然后得到K个被hash过的集合
3. 分别得到K个集合中的最小hash,然后组成一个长度为K的hash集合
4. 最后用Jaccard index求出两篇文档的相似度

simhash

1. 把文档A分词形成分词向量L,L中的每一个元素都包涵一个分词C以及一个分词的权重W
2. 对L中的每一个元素的分词C进行hash,得到C1,然后组成一个新的向量L1
3. 初始化一个长度大于C1长度的向量V,所有元素初始化为0
4. 分别判断L1中的每一个元素C1的第i位,如果C1i是1,那么Vi加上w,否则Vi减去w
5. 最后判断V中的每一项,如果第i项大于0,那么第i项变成1,否则变成0
6. 两篇文档a,b分别得到aV,bV
6. 最后求出aV和bV的海明距离,一般距离不大于3的情况下说明两篇文档是相似的

SimHash的工作原理

SimHash算法工作流程图:

  • 1、分词,把需要判断文本分词形成这个文章的特征单词。最后形成去掉噪音词的单词序列并为每个词加上权重,我们假设权重分为5个级别(1~5)。比如:“ 美国“51区”雇员称内部有9架飞碟,曾看见灰色外星人 ” ==> 分词后为 “ 美国(4) 51区(5) 雇员(3) 称(1) 内部(2) 有(1) 9架(3) 飞碟(5) 曾(1) 看见(3) 灰色(4) 外星人(5)”,括号里是代表单词在整个句子里重要程度,数字越大越重要。
  • 2、hash,通过hash算法把每个词变成hash值,比如“美国”通过hash算法计算为 100101,“51区”通过hash算法计算为 101011。这样我们的字符串就变成了一串串数字,还记得文章开头说过的吗,要把文章变为数字计算才能提高相似度计算性能,现在是降维过程进行时。
  • 3、加权,通过 2步骤的hash生成结果,需要按照单词的权重形成加权数字串,比如“美国”的hash值为“100101”,通过加权计算为“4 -4 -4 4 -4 4”;“51区”的hash值为“101011”,通过加权计算为 “ 5 -5 5 -5 5 5”。
  • 4、合并,把上面各个单词算出来的序列值累加,变成只有一个序列串。比如 “美国”的 “4 -4 -4 4 -4 4”,“51区”的 “ 5 -5 5 -5 5 5”, 把每一位进行累加, “4+5 -4+-5 -4+5 4+-5 -4+5 4+5” ==》 “9 -9 1 -1 1 9”。这里作为示例只算了两个单词的,真实计算需要把所有单词的序列串累加。
  • 5、降维,把4步算出来的 “9 -9 1 -1 1 9” 变成 0 1 串,形成我们最终的simhash签名。 如果每一位大于0 记为 1,小于0 记为 0。最后算出结果为:“1 0 1 0 1 1”。

整个过程图为:

一个例子如下:

原文地址:https://www.cnblogs.com/jingsupo/p/10607764.html

时间: 2024-11-06 03:33:08

局部敏感哈希(LSH)之simhash和minhash的相关文章

【常用算法】KDTree,局部敏感哈希LSH,在基于最近邻的算法中,当N特别大的时候(TODO)

基于最近邻的算法,在各种情况下经常使用, 比如10万个用户,对每一个用户分别查找最相似的用户, 当N特别大的时候,效率就不是很高,比如当N=10^5,时已经不太好算了,因为暴力法时间复杂度为O(N^2). 故需要特殊的手段,这里有两个常用的方法, 一个是KDT树(还有Ball Tree),一个是局部敏感哈希(近似算法,得到得是满足一定置信区间的结果) KDT: O(N*longN) 局部敏感哈希(LSH):跟桶大小有关 1#  K-Dimensional Tree,KDT, https://en

局部敏感哈希LSH

之前介绍了Annoy,Annoy是一种高维空间寻找近似最近邻的算法(ANN)的一种,接下来再讨论一种ANN算法,LSH局部敏感哈希. LSH的基本思想是: 原始空间中相邻的数据点通过映射或投影变换后,在新空间中仍然相邻的概率很大,而不相邻的数据点映射后相邻的概率比较小. 也就是说,我们对原始空间中的数据进行hash映射后,希望相邻的数据能够映射到Hash的同一个桶内. 对所有的原始数据进行hash映射后,就会得到一个hashtable,这个hashtable同一个桶内的数据在原始空间中相邻的概率

局部敏感哈希(Locality-Sensitive Hashing, LSH)方法介绍(转)

局部敏感哈希(Locality-Sensitive Hashing, LSH)方法介绍 本文主要介绍一种用于海量高维数据的近似最近邻快速查找技术--局部敏感哈希(Locality-Sensitive Hashing, LSH),内容包括了LSH的原理.LSH哈希函数集.以及LSH的一些参考资料. 一.局部敏感哈希LSH 在很多应用领域中,我们面对和需要处理的数据往往是海量并且具有很高的维度,怎样快速地从海量的高维数据集合中找到与某个数据最相似(距离最近)的一个数据或多个数据成为了一个难点和问题.

局部敏感哈希(Locality-Sensitive Hashing, LSH)

转自局部敏感哈希(Locality-Sensitive Hashing, LSH) 一.局部敏感哈希LSH 在很多应用领域中,我们面对和需要处理的数据往往是海量并且具有很高的维度,怎样快速地从海量的高维数据集合中找到与某个数据最相似(距离最近)的一个数据或多个数据成为了一个难点和问题.如果是低维的小数据集,我们通过线性查找(Linear Search)就可以容易解决,但如果是对一个海量的高维数据集采用线性查找匹配的话,会非常耗时,因此,为了解决该问题,我们需要采用一些类似索引的技术来加快查找过程

R语言实现︱局部敏感哈希算法(LSH)解决文本机械相似性的问题(二,textreuse介绍)

上一篇(R语言实现︱局部敏感哈希算法(LSH)解决文本机械相似性的问题(一,基本原理))讲解了LSH的基本原理,笔者在想这么牛气冲天的方法在R语言中能不能实现得了呢? 于是在网上搜索了一下,真的发现了一个叫textreuse的包可以实现这样的功能,而且该包较为完整,可以很好地满足要求. 现在的版本是 0.1.3,最近的更新的时间为 2016-03-28. 国内貌似比较少的用这个包来实现这个功能,毕竟R语言在运行大规模数据的性能比较差,而LSH又是处理大规模数据的办法,所以可能国内比较少的用R来执

基于局部敏感哈希的协同过滤算法之simHash算法

搜集了快一个月的资料,虽然不完全懂,但还是先慢慢写着吧,说不定就有思路了呢. 开源的最大好处是会让作者对脏乱臭的代码有羞耻感. 当一个做推荐系统的部门开始重视[数据清理,数据标柱,效果评测,数据统计,数据分析]这些所谓的脏活累活,这样的推荐系统才会有救. 求教GitHub的使用. 简单不等于傻逼. 我为什么说累:我又是一个习惯在聊天中思考前因后果的人,所以整个大脑高负荷运转.不过这样真不好,学习学成傻逼了. 研一的最大收获是让我明白原来以前仰慕的各种国家自然基金项目,原来都是可以浑水摸鱼忽悠过去

为什么要用局部敏感哈希

一.题外话 虽然是科普,不过笔者个人认为大道至简,也就是说越简单的东西很可能越值得探讨,或者另外一种说法越简单的东西越不好讲解:其实笔者认为这就是<编程之美>所要传递的——大道至简. 软件构建老师给我推荐的<走出软件作坊>还没看呢. 二.概述 高维数据检索(high-dimentional retrieval)是一个有挑战的任务.对于给定的待检索数据(query),对数据库中的数据逐一进行相似度比较是不现实的,它将耗费大量的时间和空间.这里我们面对的问题主要有两个,第一,两个高维向

局部敏感哈希简介

上一年记录的东西,整理下... LSH,是Locality Sensitive Hashing的缩写,也翻译为局部敏感哈希,是一种通过设计满足特殊性质即局部敏感的哈希函数,提高相似查询效率的方法. 虽然从正式提出距今不过十余年,由于其局部敏感的特殊性质,以及在高维数据上相当于k-d树等方法的优越性,LSH被广泛地运用于各种检索(包括并不仅限于文本.音频.图片.视频.基因等)领域. 一.哈希检索概述 1.1 检索分类 在检索技术中,索引一直需要研究的核心技术.当下,索引技术主要分为三类:基于树的索

局部敏感哈希(Locality Sensitive Hashing)

比较不同的文章.图片啊什么的是否相似,如果一对一的比较,数据量大的话,以O(n2)的时间复杂度来看,计算量相当惊人.所以如果是找相同就好了,直接扔到一个hashmap中即可.这样就是O(n)的复杂度了.不过相同的字符串一定会得到相同的hash,而不同的字符串,哪怕只有一点点不同,也极可能得到完全不同hash.很自然的想到,要是相似的object能够得到相似的hash就好了.局部敏感哈希就是这样的hash,实现了相似的object的hash也是相似的. 定义相似 要找相似,首先是要定义什么事相似.

局部敏感哈希之KSH

核函数Kernel Function 流程 分析 监督信息Supervised Information 内积法计算相似度Code Inner Product 目标函数Objective Function 贪心算法求解Greedy Optimization 频谱化宽松Spectral Relaxation Sigmoid平滑Sigmoid Smoothing 最终算法 参考文献 在局部敏感哈希文中,分析了局部敏感哈希方法是如何应用在检索过程中的,以及原始的哈希方法和基于p-stable分布的哈希方