AVL树平衡旋转详解

AVL树平衡旋转详解

概述

AVL树又叫做平衡二叉树。前言部分我也有说到,AVL树的前提是二叉排序树(BST或叫做二叉查找树)。由于在生成BST树的过程中可能会出现线型树结构,比如插入的顺序是:1, 2, 3, 4, 5, 6, 7..., n。在BST树中,比较理想的状况是每个子树的左子树和右子树的高度相等,此时搜索的时间复杂度是log(N)。可是,一旦这棵树演化成了线型树的时候,这个理想的情况就不存在了,此时搜索的时间复杂度是O(N),在数据量很大的情况下,我们并不愿意看到这样的结果。

现在我们要做的事就是让BST在创建的过程中不要向线型树发展。方法就是让其在添加新节点的时候,不断调整树的平衡状态。

定义:它是一棵空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树。

AVL树实现

1.节点失衡

我们对于节点平衡有这样的定义:它是一棵空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树。而这里提到的高度差,就是我们下面会引入的平衡因子:BF(balance factor)。

因为AVL树说到底还是一个二叉树,只有两个子节点。而且节点失衡的发生,是因为有一个新节点的插入,这个新插入的节点导致了某些节点左右子节点高度的不一致。所以我们可以枚举出以下4种情况的失衡状态。

(1)在一个节点的左子树的左子树上插入一个新节点。即LL。在这种情况下,我们可以通过将节点右旋使其平衡。如图-2所示

图-2 LL单右旋操作

原A的左孩子B变为父结点,A变为其右孩子,而原B的右子树变为A的左子树,注意旋转之后Brh是A的左子树。

(2)在一个节点的右子树的右子树上插入一个新节点。即RR。在这种情况下,我们可以通过将节点左旋使其平衡。如图-3所示;

图-3 RR单左旋操作

这时只需要把树向左旋转一次即可,如图所示,原A右孩子B变为父结点,A变为其左孩子,而原B的左子树Blh将变为A的右子树。

(3)在一个节点的左子树的右子树上插入一个新节点。即LR。在这种情况下,我们不能直接通过将节点左旋或右来使其平衡了。这里需要两步来完成,先让树中高度较低的进行一次左旋(RR型),这个时候就变成了LL了。再进行一次单右旋操作即可。如图-4所示;

图-4 LR先左旋再右旋操作

这时需要旋转两次,仅一次的旋转是不能够使二叉树再次平衡。如图所示,在B节点按照RR型向左旋转一次之后,二叉树在A节点仍然不能保持平衡,这时还需要再向右旋转一次。

(4)在一个节点的右子树的左子树上插入一个新节点。即RL。在这种情况下,我们不能直接通过将节点左旋或右来使其平衡了。这里需要两步来完成,先让树中高度较低的进行一次右旋,这个时候就变成了RR了。再进行一次单左旋操作即可。如图-5所示;

图-5 RL先右旋再左旋操作

平衡二叉树某一节点的右孩子的左子树上插入一个新的节点,使得该节点不再平衡。同样,这时需要旋转两次,旋转方向刚好同LR型相反。

从上面对节点失衡的说明,以及图解。我想你已经对旋转的操作有了一个大概地认识了吧。从图中我们也可以看出,LL型和RR型、LR型和RL型是两个行为很相似地操作。其实他们互为对称。

代码见这里

原文地址:https://www.cnblogs.com/ldq2016/p/10505036.html

时间: 2024-09-29 00:23:16

AVL树平衡旋转详解的相关文章

AVL树的旋转

平衡二叉树在进行插入操作的时候可能出现不平衡的情况,AVL树即是一种自平衡的二叉树,它通过旋转不平衡的节点来使二叉树重新保持平衡,并且查找.插入和删除操作在平均和最坏情况下时间复杂度都是O(log n) AVL树的旋转一共有四种情形,注意所有旋转情况都是围绕着使得二叉树不平衡的第一个节点展开的. 1. LL型 平衡二叉树某一节点的左孩子的左子树上插入一个新的节点,使得该节点不再平衡.这时只需要把树向右旋转一次即可,如图所示,原A的左孩子B变为父结点,A变为其右孩子,而原B的右子树变为A的左子树,

BIT 树状数组 详解 及 例题

(一)树状数组的概念 如果给定一个数组,要你求里面所有数的和,一般都会想到累加.但是当那个数组很大的时候,累加就显得太耗时了,时间复杂度为O(n),并且采用累加的方法还有一个局限,那就是,当修改掉数组中的元素后,仍然要你求数组中某段元素的和,就显得麻烦了.所以我们就要用到树状数组,他的时间复杂度为O(lgn),相比之下就快得多.下面就讲一下什么是树状数组: 一般讲到树状数组都会少不了下面这个图: 下面来分析一下上面那个图看能得出什么规律: 据图可知:c1=a1,c2=a1+a2,c3=a3,c4

IOS6屏幕旋转详解(自动旋转、手动旋转、兼容IOS6之前系统)

IOS6屏幕旋转详解(自动旋转.手动旋转.兼容IOS6之前系统) 转自:http://blog.csdn.net/cococoolwhj/article/details/8208991 概述: 在iOS6之前的版本中,通常使用 shouldAutorotateToInterfaceOrientation 来单独控制某个UIViewController的方向,需要哪个viewController支持旋转,只需要重写shouldAutorotateToInterfaceOrientation方法.

AVL树的旋转操作详解

[0]README 0.0) 本文部分idea 转自:http://blog.csdn.net/collonn/article/details/20128205 0.1) 本文仅针对性地分析AVL树的单旋转(左左单旋转和右右单旋转)和 双旋转(左右双旋转和右左单旋转)的内部核心技巧: 0.2) 不得不提的是,旋转有两个属性: 轴 和 旋转方向: (旋转轴即是原最小树经过旋转修正后的符合AVL的最小树的根节点)0.3) 旋转轴的确定 : (干货--单双旋转的旋转轴确定问题) 0.3.1)单旋转:旋

AVL树的JAVA实现及AVL树的旋转算法

1,AVL树又称平衡二叉树,它首先是一颗二叉查找树,但在二叉查找树中,某个结点的左右子树高度之差的绝对值可能会超过1,称之为不平衡.而在平衡二叉树中,任何结点的左右子树高度之差的绝对值会小于等于 1. 2,为什么需要AVL树呢?在二叉查找树中最坏情况下查找某个元素的时间复杂度为O(n),而AVL树能保证查找操作的时间复杂度总为O(logn). 3,AVL树的JAVA代码实现: AVLTree  继承 BinarySearchTree 并改写 添加节点的add方法,在add方法中判断插入元素后是否

AVL树的旋转实现

AVL树:带有平衡条件的二叉查找树,即一棵AVL树是其每个节点的左子树和右子树的高度最多相差1的二叉查找树.一般通过Single Rotate和Double Rotate来保持AVL树的平衡.AVL树的实现如下: 1) Single Rotate 2)Double Rotate 1) Single Rotate ( SingleRotateWithRight同理) static Position SingleRotateWithLeft(Position K2) { Position K1; K

AVL树的旋转与插入

typedef struct AVLNode *Position; typedef Position AVLTree; /* AVL树类型 */ struct AVLNode{ ElementType Data; /* 结点数据 */ AVLTree Left;     /* 指向左子树 */ AVLTree Right;    /* 指向右子树 */ int Height;       /* 树高 */ }; int Max ( int a, int b ) { return a > b ? 

高级数据结构:优先队列、图、前缀树、分段树以及树状数组详解

优秀的算法往往取决于你采用哪种数据结构,除了常规数据结构,日常更多也会遇到高级的数据结构,实现要比那些常用的数据结构要复杂得多,这些高级的数据结构能够让你在处理一些复杂问题的过程中多拥有一把利器.同时,掌握好它们的性质以及所适用的场合,在分析问题的时候回归本质,很多题目都能迎刃而解了. 这篇文章将重点介绍几种高级的数据结构,它们是:优先队列.图.前缀树.分段树以及树状数组. 一.优先队列 1.优先队列的作用 优先队列最大的作用是能保证每次取出的元素都是队列中优先级别最高的,这个优先级别可以是自定

【OpenCV】图像旋转详解,边缘用黑色填充

项目要用到图像旋转,OpenCV里面居然没有专门封装好的函数,只好自己写了.根据<learnning OpenCV>发现效果不是很理想,旋转后图像大小不变,可是图像却被裁减了. 例子如下: int main( int argc, char** argv ) { IplImage* src=cvLoadImage("C:\\Users\\Liu\\Desktop\\bridge.bmp",1); IplImage* dst = cvCloneImage( src ); int