用guava快速打造两级缓存能力

  首先,咱们都有一共识,即可以使用缓存来提升系统的访问速度!

  现如今,分布式缓存这么强大,所以,大部分时候,我们可能都不会去关注本地缓存了!

  而在一起高并发的场景,如果我们一味使用nosql式的缓存,如 redis, 那么也是好的吧!

  但是有个问题我们得考虑下: redis 这样的缓存是快,但是它总有自己的瓶颈吧,如果什么东西我们都往里面存储,则在高并发场景下,应用瓶颈将受限于其缓存瓶颈吧!

  所以,针对这种问题,在一些场景下,咱们可以使用本地缓存来存储一些数据,从而避免每次都将请求击穿到 redis 层面!

  本文考虑的是使用 本地缓存 作为二级缓存存在,而非直接的充当缓存工具!  

而使用本地缓存,则有几个讲究:

  1. 缓存一致性问题;
  2. 并发安全问题;

  所谓缓存一致性问题,就是本地缓存,是否和redis等缓存中间件的数据保持一致,如果不一致的表现超过了可接受的程度,则要这访问速度也就没啥意义了!

  所谓并发安全问题,即是,当使用本地缓存时,本地的缓存访问线程安全性问题,如果出现错乱情况,则严重了!

使用本地缓存,有什么好处?

  1. 减少访问远程缓存的网络io,速度自然是要提升的;
  2. 减少远程缓存的并发请求,从而表现出更大的并发处理能力;

本地缓存,都有什么应用场景?

  1. 单机部署的应用咱们就不说了;
  2. 读多写少的场景;(这也缓存的应用场景)
  3. 可以容忍一定时间内的缓存不一致; (因涉及的本地缓存,分布式机器结果必可能不一致)
  4. 应用对缓存的请求量非常大的场景; (如果直接打到redis缓存, 则redis压力巨大, 且应用响应速度将变慢)

  所以,如果自己存在这样的使用场景,不防也考虑下,如何使用这本地缓存,来提升响应速度吧!

如果要求自己来实现这两级缓存功能,我想应该也是不能的!只要解决掉两个问题即可:

  1. 缓存过期策略;
  2. 缓存安全性;

其中一最简单直接的方式,就是使用一个定时刷新缓存的线程,在时间节点到达后,将缓存删除即可; 另一个安全问题,则可以使用 synchronized 或 并发包下的锁工具来实现即可。

  但是真正做起来,可能不一定会简单,这也不是咱们想特别考虑的。

  咱们主要看下 guava 是如何来解决这种问题的?以其思路来开拓自己的设想!

如何 guava 来作为我们的二级缓存?

  1. 首先,咱们得引入 guava 的依赖

        <dependency>
            <groupId>com.google.guava</groupId>
            <artifactId>guava</artifactId>
            <version>18.0</version>
        </dependency>

  2. 创建guava缓存;

  首先,创建的guava缓存实例,应是全局共用的,否则就失去了缓存的意义;

  其次,一些过期参数,应支持配置化;

  例子如下:

@Component
@Slf4j
public class LocalEnhancedCacheHolder {

    @Value("${guava.cache.max.size}")
    private Integer maxCacheSize;

    @Value("${guava.cache.timeout}")
    private Integer guavaCacheTimeout;

    /**
     * 字符串类型取值, k->v 只支持字符串存取,避免复杂化
     */
    private LoadingCache<String, String> stringDbCacheContainer;

    /**
     * hash 数据缓存, 展示使用多key 作为 guava 的缓存key
     */
    private LoadingCache<HashDbItemEntry, byte[]> hashDbCacheContainer;

    @Resource
    private RedisTemplate redisTemplate;

    /**
     * 值为空 字符串标识
     */
    public static final String EMPTY_VALUE_STRING = "";

    /**
     * 值为空 字节标识
     */
    public static final byte[] EMPTY_VALUE_BYTES = new byte[0];

    @PostConstruct
    public void init() {

        Integer dbCount = 2;

        stringDbCacheContainer = CacheBuilder.newBuilder()
                .expireAfterWrite(guavaCacheTimeout, TimeUnit.SECONDS)
                .maximumSize(maxCacheSize)
                .build(new CacheLoader<String, String>() {
                    @Override
                    public String load(String key) throws Exception {
                        log.info("【缓存】从redis获取配置:{}", key);
                        String value = redisTemplate.get(key);
                        return StringUtils.defaultIfBlank(value, EMPTY_VALUE_STRING);
                    }
                });

        hashDbCacheContainer = CacheBuilder.newBuilder()
                .expireAfterWrite(guavaCacheTimeout, TimeUnit.SECONDS)
                .maximumSize(maxCacheSize / dbCount)
                .build(new CacheLoader<HashDbItemEntry, byte[]>() {
                    @Override
                    public byte[] load(HashDbItemEntry keyHolder) throws Exception {
                        log.info("【缓存】从redis获取配置:{}", keyHolder);
                        byte[] valueBytes = redisTemplate.hgetValue(
                                                keyHolder.getBucketKey(), keyHolder.getSlotKey());
                        if(valueBytes == null) {
                            valueBytes = EMPTY_VALUE_BYTES;
                        }
                        return valueBytes;
                    }
                });
    }

    /**
     * 获取k-v中的缓存值
     *
     * @param key 键
     * @return 缓存值,没有值时,返回 null
     */
    public String getCache(String key) {
        try {
            return stringDbCacheContainer.get(key);
        } catch (ExecutionException e) {
            log.error("【缓存】获取缓存异常:{}, ex:{}", key, e);
            throw new RuntimeException(e);
        }
    }

    /**
     * 放入缓存,此处暂只实现为向redis写入值
     *
     * @param key 缓存key
     * @param value 缓存value
     */
    public void putCache(String key, String value) {
        redisTemplate.set(key, value, 0L);
    }

    /**
     * 放入缓存带超时时间设置,此处暂只实现为向redis写入值
     *
     * @param key 缓存key
     * @param value 缓存value
     * @param timeout 超时时间,单位 s
     */
    public void putCache(String key, String value, Long timeout) {
        redisTemplate.set(key, value, timeout);
    }

    /**
     * 删除单个kv缓存
     *
     * @param key 缓存键
     */
    public void removeCache(String key) {
        redisTemplate.remove(key);
    }

    /**
     * 批量删除单个kv缓存
     *
     * @param keyList 缓存键 列表,以 管道形式删除,性能更高
     */
    public void removeCache(Collection<String> keyList) {
        redisTemplate.remove(keyList);
    }

    /**
     * 从hash数据库中获取缓存值
     *
     * @param bucketKey 桶key, 对应一系列值 k->v
     * @param slotKey 槽key, 对应具体的缓存值
     * @return 缓存值
     */
    public byte[] getCacheFromHash(String bucketKey, String slotKey) {
        HashDbItemEntry entry = new HashDbItemEntry(bucketKey, slotKey);
        try {
            return hashDbCacheContainer.get(entry);
        } catch (ExecutionException e) {
            log.error("【缓存】获取缓存异常:{}, ex:{}", entry, e);
            throw new RuntimeException(e);
        }
    }

    /**
     * hash 数据结构存储
     *
     *      value 暂不存储相应值,只做查询使用
     */
    class HashDbItemEntry {
        private String bucketKey;
        private String slotKey;
        private Object value;

        public HashDbItemEntry(String bucketKey, String slotKey) {
            this.bucketKey = bucketKey;
            this.slotKey = slotKey;
        }

        public String getBucketKey() {
            return bucketKey;
        }

        public String getSlotKey() {
            return slotKey;
        }

        public Object getValue() {
            return value;
        }

        // 必重写 equals & hashCode, 否则缓存将无法复用
        @Override
        public boolean equals(Object o) {
            if (this == o) return true;
            if (o == null || getClass() != o.getClass()) return false;
            HashDbItemEntry that = (HashDbItemEntry) o;
            return Objects.equals(bucketKey, that.bucketKey) &&
                    Objects.equals(slotKey, that.slotKey) &&
                    Objects.equals(value, that.value);
        }

        @Override
        public int hashCode() {
            return Objects.hash(bucketKey, slotKey, value);
        }

        @Override
        public String toString() {
                return "HashDbItemEntry{" +
                    "bucketKey=‘" + bucketKey + ‘\‘‘ +
                    ", slotKey=‘" + slotKey + ‘\‘‘ +
                    ", value=" + value +
                    ‘}‘;
        }
    }
}

  如上例子,展示了两种缓存,一种是 简单的 string -> string 的缓存, 另一种是 (string, string) -> byte[] 的缓存; 不管怎么样,只是想说明,缓存的方式有多种!

  我们就以简单的 string -> string 来说明吧!

        stringDbCacheContainer = CacheBuilder.newBuilder()
                .expireAfterWrite(guavaCacheTimeout, TimeUnit.SECONDS)
                .maximumSize(maxCacheSize)
                .build(new CacheLoader<String, String>() {
                    @Override
                    public String load(String key) throws Exception {
                        log.info("【缓存】从redis获取配置:{}", key);
                        String value = redisTemplate.get(key);
                        return StringUtils.defaultIfBlank(value, EMPTY_VALUE_STRING);
                    }
                });

  如上,咱们创建了一个缓存容器,它的最大容量是 maxCacheSize, 且每个key将在 guavaCacheTimeout 后过期, 过期后将从 redisTemplate 中获取数据!

  如上,一个完整的 两级缓存组件就完成了,你大可以直接在项目进行相应的操作了!是不是很简单?

深入理解guava 二级缓存原理?

  1. CacheBuilder 是如何创建的?

@GwtCompatible(emulated = true)
public final class CacheBuilder<K, V> {
  private static final int DEFAULT_INITIAL_CAPACITY = 16;
  private static final int DEFAULT_CONCURRENCY_LEVEL = 4;
  private static final int DEFAULT_EXPIRATION_NANOS = 0;
  private static final int DEFAULT_REFRESH_NANOS = 0;

  static final Supplier<? extends StatsCounter> NULL_STATS_COUNTER = Suppliers.ofInstance(
      new StatsCounter() {
        @Override
        public void recordHits(int count) {}

        @Override
        public void recordMisses(int count) {}

        @Override
        public void recordLoadSuccess(long loadTime) {}

        @Override
        public void recordLoadException(long loadTime) {}

        @Override
        public void recordEviction() {}

        @Override
        public CacheStats snapshot() {
          return EMPTY_STATS;
        }
      });
  static final CacheStats EMPTY_STATS = new CacheStats(0, 0, 0, 0, 0, 0);

  static final Supplier<StatsCounter> CACHE_STATS_COUNTER =
      new Supplier<StatsCounter>() {
    @Override
    public StatsCounter get() {
      return new SimpleStatsCounter();
    }
  };

  enum NullListener implements RemovalListener<Object, Object> {
    INSTANCE;

    @Override
    public void onRemoval(RemovalNotification<Object, Object> notification) {}
  }

  enum OneWeigher implements Weigher<Object, Object> {
    INSTANCE;

    @Override
    public int weigh(Object key, Object value) {
      return 1;
    }
  }

  static final Ticker NULL_TICKER = new Ticker() {
    @Override
    public long read() {
      return 0;
    }
  };

  private static final Logger logger = Logger.getLogger(CacheBuilder.class.getName());

  static final int UNSET_INT = -1;

  boolean strictParsing = true;

  int initialCapacity = UNSET_INT;
  int concurrencyLevel = UNSET_INT;
  long maximumSize = UNSET_INT;
  long maximumWeight = UNSET_INT;
  Weigher<? super K, ? super V> weigher;

  Strength keyStrength;
  Strength valueStrength;

  long expireAfterWriteNanos = UNSET_INT;
  long expireAfterAccessNanos = UNSET_INT;
  long refreshNanos = UNSET_INT;

  Equivalence<Object> keyEquivalence;
  Equivalence<Object> valueEquivalence;

  RemovalListener<? super K, ? super V> removalListener;
  Ticker ticker;

  Supplier<? extends StatsCounter> statsCounterSupplier = NULL_STATS_COUNTER;

  // TODO(fry): make constructor private and update tests to use newBuilder
  CacheBuilder() {}

  /**
   * Constructs a new {@code CacheBuilder} instance with default settings, including strong keys,
   * strong values, and no automatic eviction of any kind.
   */
  public static CacheBuilder<Object, Object> newBuilder() {
    return new CacheBuilder<Object, Object>();
  }

  /**
   * Sets the minimum total size for the internal hash tables. For example, if the initial capacity
   * is {@code 60}, and the concurrency level is {@code 8}, then eight segments are created, each
   * having a hash table of size eight. Providing a large enough estimate at construction time
   * avoids the need for expensive resizing operations later, but setting this value unnecessarily
   * high wastes memory.
   *
   * @throws IllegalArgumentException if {@code initialCapacity} is negative
   * @throws IllegalStateException if an initial capacity was already set
   */
  public CacheBuilder<K, V> initialCapacity(int initialCapacity) {
    checkState(this.initialCapacity == UNSET_INT, "initial capacity was already set to %s",
        this.initialCapacity);
    checkArgument(initialCapacity >= 0);
    this.initialCapacity = initialCapacity;
    return this;
  }

  int getInitialCapacity() {
    return (initialCapacity == UNSET_INT) ? DEFAULT_INITIAL_CAPACITY : initialCapacity;
  }

  /**
   * Guides the allowed concurrency among update operations. Used as a hint for internal sizing. The
   * table is internally partitioned to try to permit the indicated number of concurrent updates
   * without contention. Because assignment of entries to these partitions is not necessarily
   * uniform, the actual concurrency observed may vary. Ideally, you should choose a value to
   * accommodate as many threads as will ever concurrently modify the table. Using a significantly
   * higher value than you need can waste space and time, and a significantly lower value can lead
   * to thread contention. But overestimates and underestimates within an order of magnitude do not
   * usually have much noticeable impact. A value of one permits only one thread to modify the cache
   * at a time, but since read operations and cache loading computations can proceed concurrently,
   * this still yields higher concurrency than full synchronization.
   *
   * <p> Defaults to 4. <b>Note:</b>The default may change in the future. If you care about this
   * value, you should always choose it explicitly.
   *
   * <p>The current implementation uses the concurrency level to create a fixed number of hashtable
   * segments, each governed by its own write lock. The segment lock is taken once for each explicit
   * write, and twice for each cache loading computation (once prior to loading the new value,
   * and once after loading completes). Much internal cache management is performed at the segment
   * granularity. For example, access queues and write queues are kept per segment when they are
   * required by the selected eviction algorithm. As such, when writing unit tests it is not
   * uncommon to specify {@code concurrencyLevel(1)} in order to achieve more deterministic eviction
   * behavior.
   *
   * <p>Note that future implementations may abandon segment locking in favor of more advanced
   * concurrency controls.
   *
   * @throws IllegalArgumentException if {@code concurrencyLevel} is nonpositive
   * @throws IllegalStateException if a concurrency level was already set
   */
  public CacheBuilder<K, V> concurrencyLevel(int concurrencyLevel) {
    checkState(this.concurrencyLevel == UNSET_INT, "concurrency level was already set to %s",
        this.concurrencyLevel);
    checkArgument(concurrencyLevel > 0);
    this.concurrencyLevel = concurrencyLevel;
    return this;
  }

  int getConcurrencyLevel() {
    return (concurrencyLevel == UNSET_INT) ? DEFAULT_CONCURRENCY_LEVEL : concurrencyLevel;
  }

  /**
   * Specifies the maximum number of entries the cache may contain. Note that the cache <b>may evict
   * an entry before this limit is exceeded</b>. As the cache size grows close to the maximum, the
   * cache evicts entries that are less likely to be used again. For example, the cache may evict an
   * entry because it hasn‘t been used recently or very often.
   *
   * <p>When {@code size} is zero, elements will be evicted immediately after being loaded into the
   * cache. This can be useful in testing, or to disable caching temporarily without a code change.
   *
   * <p>This feature cannot be used in conjunction with {@link #maximumWeight}.
   *
   * @param size the maximum size of the cache
   * @throws IllegalArgumentException if {@code size} is negative
   * @throws IllegalStateException if a maximum size or weight was already set
   */
  public CacheBuilder<K, V> maximumSize(long size) {
    checkState(this.maximumSize == UNSET_INT, "maximum size was already set to %s",
        this.maximumSize);
    checkState(this.maximumWeight == UNSET_INT, "maximum weight was already set to %s",
        this.maximumWeight);
    checkState(this.weigher == null, "maximum size can not be combined with weigher");
    checkArgument(size >= 0, "maximum size must not be negative");
    this.maximumSize = size;
    return this;
  }

  /**
   * Specifies the maximum weight of entries the cache may contain. Weight is determined using the
   * {@link Weigher} specified with {@link #weigher}, and use of this method requires a
   * corresponding call to {@link #weigher} prior to calling {@link #build}.
   *
   * <p>Note that the cache <b>may evict an entry before this limit is exceeded</b>. As the cache
   * size grows close to the maximum, the cache evicts entries that are less likely to be used
   * again. For example, the cache may evict an entry because it hasn‘t been used recently or very
   * often.
   *
   * <p>When {@code weight} is zero, elements will be evicted immediately after being loaded into
   * cache. This can be useful in testing, or to disable caching temporarily without a code
   * change.
   *
   * <p>Note that weight is only used to determine whether the cache is over capacity; it has no
   * effect on selecting which entry should be evicted next.
   *
   * <p>This feature cannot be used in conjunction with {@link #maximumSize}.
   *
   * @param weight the maximum total weight of entries the cache may contain
   * @throws IllegalArgumentException if {@code weight} is negative
   * @throws IllegalStateException if a maximum weight or size was already set
   * @since 11.0
   */
  @GwtIncompatible("To be supported")
  public CacheBuilder<K, V> maximumWeight(long weight) {
    checkState(this.maximumWeight == UNSET_INT, "maximum weight was already set to %s",
        this.maximumWeight);
    checkState(this.maximumSize == UNSET_INT, "maximum size was already set to %s",
        this.maximumSize);
    this.maximumWeight = weight;
    checkArgument(weight >= 0, "maximum weight must not be negative");
    return this;
  }

  /**
   * Specifies the weigher to use in determining the weight of entries. Entry weight is taken
   * into consideration by {@link #maximumWeight(long)} when determining which entries to evict, and
   * use of this method requires a corresponding call to {@link #maximumWeight(long)} prior to
   * calling {@link #build}. Weights are measured and recorded when entries are inserted into the
   * cache, and are thus effectively static during the lifetime of a cache entry.
   *
   * <p>When the weight of an entry is zero it will not be considered for size-based eviction
   * (though it still may be evicted by other means).
   *
   * <p><b>Important note:</b> Instead of returning <em>this</em> as a {@code CacheBuilder}
   * instance, this method returns {@code CacheBuilder<K1, V1>}. From this point on, either the
   * original reference or the returned reference may be used to complete configuration and build
   * the cache, but only the "generic" one is type-safe. That is, it will properly prevent you from
   * building caches whose key or value types are incompatible with the types accepted by the
   * weigher already provided; the {@code CacheBuilder} type cannot do this. For best results,
   * simply use the standard method-chaining idiom, as illustrated in the documentation at top,
   * configuring a {@code CacheBuilder} and building your {@link Cache} all in a single statement.
   *
   * <p><b>Warning:</b> if you ignore the above advice, and use this {@code CacheBuilder} to build
   * a cache whose key or value type is incompatible with the weigher, you will likely experience
   * a {@link ClassCastException} at some <i>undefined</i> point in the future.
   *
   * @param weigher the weigher to use in calculating the weight of cache entries
   * @throws IllegalArgumentException if {@code size} is negative
   * @throws IllegalStateException if a maximum size was already set
   * @since 11.0
   */
  @GwtIncompatible("To be supported")
  public <K1 extends K, V1 extends V> CacheBuilder<K1, V1> weigher(
      Weigher<? super K1, ? super V1> weigher) {
    checkState(this.weigher == null);
    if (strictParsing) {
      checkState(this.maximumSize == UNSET_INT, "weigher can not be combined with maximum size",
          this.maximumSize);
    }

    // safely limiting the kinds of caches this can produce
    @SuppressWarnings("unchecked")
    CacheBuilder<K1, V1> me = (CacheBuilder<K1, V1>) this;
    me.weigher = checkNotNull(weigher);
    return me;
  }

  // Make a safe contravariant cast now so we don‘t have to do it over and over.
  @SuppressWarnings("unchecked")
  <K1 extends K, V1 extends V> Weigher<K1, V1> getWeigher() {
    return (Weigher<K1, V1>) MoreObjects.firstNonNull(weigher, OneWeigher.INSTANCE);
  }

  /**
   * Specifies that each entry should be automatically removed from the cache once a fixed duration
   * has elapsed after the entry‘s creation, or the most recent replacement of its value.
   *
   * <p>When {@code duration} is zero, this method hands off to
   * {@link #maximumSize(long) maximumSize}{@code (0)}, ignoring any otherwise-specificed maximum
   * size or weight. This can be useful in testing, or to disable caching temporarily without a code
   * change.
   *
   * <p>Expired entries may be counted in {@link Cache#size}, but will never be visible to read or
   * write operations. Expired entries are cleaned up as part of the routine maintenance described
   * in the class javadoc.
   *
   * @param duration the length of time after an entry is created that it should be automatically
   *     removed
   * @param unit the unit that {@code duration} is expressed in
   * @throws IllegalArgumentException if {@code duration} is negative
   * @throws IllegalStateException if the time to live or time to idle was already set
   */
  public CacheBuilder<K, V> expireAfterWrite(long duration, TimeUnit unit) {
    checkState(expireAfterWriteNanos == UNSET_INT, "expireAfterWrite was already set to %s ns",
        expireAfterWriteNanos);
    checkArgument(duration >= 0, "duration cannot be negative: %s %s", duration, unit);
    this.expireAfterWriteNanos = unit.toNanos(duration);
    return this;
  }

  long getExpireAfterWriteNanos() {
    return (expireAfterWriteNanos == UNSET_INT) ? DEFAULT_EXPIRATION_NANOS : expireAfterWriteNanos;
  }

  /**
   * Specifies that each entry should be automatically removed from the cache once a fixed duration
   * has elapsed after the entry‘s creation, the most recent replacement of its value, or its last
   * access. Access time is reset by all cache read and write operations (including
   * {@code Cache.asMap().get(Object)} and {@code Cache.asMap().put(K, V)}), but not by operations
   * on the collection-views of {@link Cache#asMap}.
   *
   * <p>When {@code duration} is zero, this method hands off to
   * {@link #maximumSize(long) maximumSize}{@code (0)}, ignoring any otherwise-specificed maximum
   * size or weight. This can be useful in testing, or to disable caching temporarily without a code
   * change.
   *
   * <p>Expired entries may be counted in {@link Cache#size}, but will never be visible to read or
   * write operations. Expired entries are cleaned up as part of the routine maintenance described
   * in the class javadoc.
   *
   * @param duration the length of time after an entry is last accessed that it should be
   *     automatically removed
   * @param unit the unit that {@code duration} is expressed in
   * @throws IllegalArgumentException if {@code duration} is negative
   * @throws IllegalStateException if the time to idle or time to live was already set
   */
  public CacheBuilder<K, V> expireAfterAccess(long duration, TimeUnit unit) {
    checkState(expireAfterAccessNanos == UNSET_INT, "expireAfterAccess was already set to %s ns",
        expireAfterAccessNanos);
    checkArgument(duration >= 0, "duration cannot be negative: %s %s", duration, unit);
    this.expireAfterAccessNanos = unit.toNanos(duration);
    return this;
  }

  long getExpireAfterAccessNanos() {
    return (expireAfterAccessNanos == UNSET_INT)
        ? DEFAULT_EXPIRATION_NANOS : expireAfterAccessNanos;
  }

  /**
   * Specifies that active entries are eligible for automatic refresh once a fixed duration has
   * elapsed after the entry‘s creation, or the most recent replacement of its value. The semantics
   * of refreshes are specified in {@link LoadingCache#refresh}, and are performed by calling
   * {@link CacheLoader#reload}.
   *
   * <p>As the default implementation of {@link CacheLoader#reload} is synchronous, it is
   * recommended that users of this method override {@link CacheLoader#reload} with an asynchronous
   * implementation; otherwise refreshes will be performed during unrelated cache read and write
   * operations.
   *
   * <p>Currently automatic refreshes are performed when the first stale request for an entry
   * occurs. The request triggering refresh will make a blocking call to {@link CacheLoader#reload}
   * and immediately return the new value if the returned future is complete, and the old value
   * otherwise.
   *
   * <p><b>Note:</b> <i>all exceptions thrown during refresh will be logged and then swallowed</i>.
   *
   * @param duration the length of time after an entry is created that it should be considered
   *     stale, and thus eligible for refresh
   * @param unit the unit that {@code duration} is expressed in
   * @throws IllegalArgumentException if {@code duration} is negative
   * @throws IllegalStateException if the refresh interval was already set
   * @since 11.0
   */
  @Beta
  @GwtIncompatible("To be supported (synchronously).")
  public CacheBuilder<K, V> refreshAfterWrite(long duration, TimeUnit unit) {
    checkNotNull(unit);
    checkState(refreshNanos == UNSET_INT, "refresh was already set to %s ns", refreshNanos);
    checkArgument(duration > 0, "duration must be positive: %s %s", duration, unit);
    this.refreshNanos = unit.toNanos(duration);
    return this;
  }

  long getRefreshNanos() {
    return (refreshNanos == UNSET_INT) ? DEFAULT_REFRESH_NANOS : refreshNanos;
  }

  /**
   * Specifies a nanosecond-precision time source for use in determining when entries should be
   * expired. By default, {@link System#nanoTime} is used.
   *
   * <p>The primary intent of this method is to facilitate testing of caches which have been
   * configured with {@link #expireAfterWrite} or {@link #expireAfterAccess}.
   *
   * @throws IllegalStateException if a ticker was already set
   */
  public CacheBuilder<K, V> ticker(Ticker ticker) {
    checkState(this.ticker == null);
    this.ticker = checkNotNull(ticker);
    return this;
  }

  Ticker getTicker(boolean recordsTime) {
    if (ticker != null) {
      return ticker;
    }
    return recordsTime ? Ticker.systemTicker() : NULL_TICKER;
  }

  /**
   * Specifies a listener instance that caches should notify each time an entry is removed for any
   * {@linkplain RemovalCause reason}. Each cache created by this builder will invoke this listener
   * as part of the routine maintenance described in the class documentation above.
   *
   * <p><b>Warning:</b> after invoking this method, do not continue to use <i>this</i> cache
   * builder reference; instead use the reference this method <i>returns</i>. At runtime, these
   * point to the same instance, but only the returned reference has the correct generic type
   * information so as to ensure type safety. For best results, use the standard method-chaining
   * idiom illustrated in the class documentation above, configuring a builder and building your
   * cache in a single statement. Failure to heed this advice can result in a {@link
   * ClassCastException} being thrown by a cache operation at some <i>undefined</i> point in the
   * future.
   *
   * <p><b>Warning:</b> any exception thrown by {@code listener} will <i>not</i> be propagated to
   * the {@code Cache} user, only logged via a {@link Logger}.
   *
   * @return the cache builder reference that should be used instead of {@code this} for any
   *     remaining configuration and cache building
   * @throws IllegalStateException if a removal listener was already set
   */
  @CheckReturnValue
  public <K1 extends K, V1 extends V> CacheBuilder<K1, V1> removalListener(
      RemovalListener<? super K1, ? super V1> listener) {
    checkState(this.removalListener == null);

    // safely limiting the kinds of caches this can produce
    @SuppressWarnings("unchecked")
    CacheBuilder<K1, V1> me = (CacheBuilder<K1, V1>) this;
    me.removalListener = checkNotNull(listener);
    return me;
  }

  // Make a safe contravariant cast now so we don‘t have to do it over and over.
  @SuppressWarnings("unchecked")
  <K1 extends K, V1 extends V> RemovalListener<K1, V1> getRemovalListener() {
    return (RemovalListener<K1, V1>)
        MoreObjects.firstNonNull(removalListener, NullListener.INSTANCE);
  }

  /**
   * Enable the accumulation of {@link CacheStats} during the operation of the cache. Without this
   * {@link Cache#stats} will return zero for all statistics. Note that recording stats requires
   * bookkeeping to be performed with each operation, and thus imposes a performance penalty on
   * cache operation.
   *
   * @since 12.0 (previously, stats collection was automatic)
   */
  public CacheBuilder<K, V> recordStats() {
    statsCounterSupplier = CACHE_STATS_COUNTER;
    return this;
  }

  boolean isRecordingStats() {
    return statsCounterSupplier == CACHE_STATS_COUNTER;
  }

  Supplier<? extends StatsCounter> getStatsCounterSupplier() {
    return statsCounterSupplier;
  }

  /**
   * Builds a cache, which either returns an already-loaded value for a given key or atomically
   * computes or retrieves it using the supplied {@code CacheLoader}. If another thread is currently
   * loading the value for this key, simply waits for that thread to finish and returns its
   * loaded value. Note that multiple threads can concurrently load values for distinct keys.
   *
   * <p>This method does not alter the state of this {@code CacheBuilder} instance, so it can be
   * invoked again to create multiple independent caches.
   *
   * @param loader the cache loader used to obtain new values
   * @return a cache having the requested features
   */
  public <K1 extends K, V1 extends V> LoadingCache<K1, V1> build(
      CacheLoader<? super K1, V1> loader) {
    checkWeightWithWeigher();
    return new LocalCache.LocalLoadingCache<K1, V1>(this, loader);
  }

  /**
   * Builds a cache which does not automatically load values when keys are requested.
   *
   * <p>Consider {@link #build(CacheLoader)} instead, if it is feasible to implement a
   * {@code CacheLoader}.
   *
   * <p>This method does not alter the state of this {@code CacheBuilder} instance, so it can be
   * invoked again to create multiple independent caches.
   *
   * @return a cache having the requested features
   * @since 11.0
   */
  public <K1 extends K, V1 extends V> Cache<K1, V1> build() {
    checkWeightWithWeigher();
    checkNonLoadingCache();
    return new LocalCache.LocalManualCache<K1, V1>(this);
  }

}

  如上,使用建造者模式创建 LoadingCache<K, V> 缓存; 设置好 最大值,过期时间等参数;

  2. 如何获取一个guava缓存?

  其实就是一个get方法而已! stringDbCacheContainer.get(key);

    // com.google.common.cache.LocalCache
    // LoadingCache methods
    @Override
    public V get(K key) throws ExecutionException {
        // 两种数据来源,一是直接获取,二是调用 load() 方法加载数据
      return localCache.getOrLoad(key);
    }
    // com.google.common.cache.LocalCache
  V getOrLoad(K key) throws ExecutionException {
    return get(key, defaultLoader);
  }
  V get(K key, CacheLoader<? super K, V> loader) throws ExecutionException {
    int hash = hash(checkNotNull(key));
    // 还记得 ConcurrentHashMap 吗? 先定位segment, 再定位 entry
    return segmentFor(hash).get(key, hash, loader);
  }
  Segment<K, V> segmentFor(int hash) {
    // TODO(fry): Lazily create segments?
    return segments[(hash >>> segmentShift) & segmentMask];
  }

    // 核心取数逻辑在此get 中
    // loading
    V get(K key, int hash, CacheLoader<? super K, V> loader) throws ExecutionException {
      checkNotNull(key);
      checkNotNull(loader);
      try {
        if (count != 0) { // read-volatile
          // don‘t call getLiveEntry, which would ignore loading values
          ReferenceEntry<K, V> e = getEntry(key, hash);
          if (e != null) {
            // 如果存在值,则依据 ticker 进行判断是否过期,从而直接返回值,具体过期逻辑稍后再说
            long now = map.ticker.read();
            V value = getLiveValue(e, now);
            if (value != null) {
              recordRead(e, now);
              statsCounter.recordHits(1);
              return scheduleRefresh(e, key, hash, value, now, loader);
            }
            ValueReference<K, V> valueReference = e.getValueReference();
            if (valueReference.isLoading()) {
              return waitForLoadingValue(e, key, valueReference);
            }
          }
        }

        // 初次加载或过期之后,进入加载逻辑,重要
        // at this point e is either null or expired;
        return lockedGetOrLoad(key, hash, loader);
      } catch (ExecutionException ee) {
        Throwable cause = ee.getCause();
        if (cause instanceof Error) {
          throw new ExecutionError((Error) cause);
        } else if (cause instanceof RuntimeException) {
          throw new UncheckedExecutionException(cause);
        }
        throw ee;
      } finally {
        postReadCleanup();
      }
    }

    // static class Segment<K, V> extends ReentrantLock
    // 整个 Segment 继承了 ReentrantLock, 所以 LocalCache 的锁是依赖于 ReentrantLock 实现的
    V lockedGetOrLoad(K key, int hash, CacheLoader<? super K, V> loader)
        throws ExecutionException {
      ReferenceEntry<K, V> e;
      ValueReference<K, V> valueReference = null;
      LoadingValueReference<K, V> loadingValueReference = null;
      boolean createNewEntry = true;

      lock();
      try {
        // re-read ticker once inside the lock
        long now = map.ticker.read();
        // 在更新值前,先把过期数据清除
        preWriteCleanup(now);

        int newCount = this.count - 1;
        AtomicReferenceArray<ReferenceEntry<K, V>> table = this.table;
        int index = hash & (table.length() - 1);
        ReferenceEntry<K, V> first = table.get(index);

        // 处理 hash 碰撞时的链表查询
        for (e = first; e != null; e = e.getNext()) {
          K entryKey = e.getKey();
          if (e.getHash() == hash && entryKey != null
              && map.keyEquivalence.equivalent(key, entryKey)) {
            valueReference = e.getValueReference();
            if (valueReference.isLoading()) {
              createNewEntry = false;
            } else {
              V value = valueReference.get();
              if (value == null) {
                enqueueNotification(entryKey, hash, valueReference, RemovalCause.COLLECTED);
              } else if (map.isExpired(e, now)) {
                // This is a duplicate check, as preWriteCleanup already purged expired
                // entries, but let‘s accomodate an incorrect expiration queue.
                enqueueNotification(entryKey, hash, valueReference, RemovalCause.EXPIRED);
              } else {
                recordLockedRead(e, now);
                statsCounter.recordHits(1);
                // we were concurrent with loading; don‘t consider refresh
                return value;
              }

              // immediately reuse invalid entries
              writeQueue.remove(e);
              accessQueue.remove(e);
              this.count = newCount; // write-volatile
            }
            break;
          }
        }

        // 如果是第一次加载,则先创建 Entry, 进入 load() 逻辑
        if (createNewEntry) {
          loadingValueReference = new LoadingValueReference<K, V>();

          if (e == null) {
            e = newEntry(key, hash, first);
            e.setValueReference(loadingValueReference);
            table.set(index, e);
          } else {
            e.setValueReference(loadingValueReference);
          }
        }
      } finally {
        unlock();
        postWriteCleanup();
      }

      if (createNewEntry) {
        try {
          // Synchronizes on the entry to allow failing fast when a recursive load is
          // detected. This may be circumvented when an entry is copied, but will fail fast most
          // of the time.
          // 同步加载数据源值, 从 loader 中处理
          synchronized (e) {
            return loadSync(key, hash, loadingValueReference, loader);
          }
        } finally {
            // 记录未命中计数,默认为空
          statsCounter.recordMisses(1);
        }
      } else {
        // The entry already exists. Wait for loading.
        // 如果有线程正在更新缓存,则等待结果即可,具体实现就是调用 Future.get()
        return waitForLoadingValue(e, key, valueReference);
      }
    }

    // 加载原始值
    // at most one of loadSync.loadAsync may be called for any given LoadingValueReference
    V loadSync(K key, int hash, LoadingValueReference<K, V> loadingValueReference,
        CacheLoader<? super K, V> loader) throws ExecutionException {
        // loadingValueReference中保存了回调引用,加载原始值
      ListenableFuture<V> loadingFuture = loadingValueReference.loadFuture(key, loader);
      // 存储数据入缓存,以便下次使用
      return getAndRecordStats(key, hash, loadingValueReference, loadingFuture);
    }

    // 从 loader 中加载数据,
    public ListenableFuture<V> loadFuture(K key, CacheLoader<? super K, V> loader) {
      stopwatch.start();
      V previousValue = oldValue.get();
      try {
        // 如果原来没有值,则直接加载后返回
        if (previousValue == null) {
          V newValue = loader.load(key);
          return set(newValue) ? futureValue : Futures.immediateFuture(newValue);
        }
        // 否则一般为无过期时间的数据进行 reload, 如果 reload() 的结果为空,则直接返回
        // 须重写 reload() 实现
        ListenableFuture<V> newValue = loader.reload(key, previousValue);
        if (newValue == null) {
          return Futures.immediateFuture(null);
        }
        // To avoid a race, make sure the refreshed value is set into loadingValueReference
        // *before* returning newValue from the cache query.
        return Futures.transform(newValue, new Function<V, V>() {
          @Override
          public V apply(V newValue) {
            LoadingValueReference.this.set(newValue);
            return newValue;
          }
        });
      } catch (Throwable t) {
        if (t instanceof InterruptedException) {
          Thread.currentThread().interrupt();
        }
        return setException(t) ? futureValue : fullyFailedFuture(t);
      }
    }

    // com.google.common.util.concurrent.Uninterruptibles
    /**
     * Waits uninterruptibly for {@code newValue} to be loaded, and then records loading stats.
     */
    V getAndRecordStats(K key, int hash, LoadingValueReference<K, V> loadingValueReference,
        ListenableFuture<V> newValue) throws ExecutionException {
      V value = null;
      try {
        // 同步等待加载结果,注意,此处返回值不允许为null, 否则将报异常,这可能是为了规避缓存攻击漏洞吧
        value = getUninterruptibly(newValue);
        if (value == null) {
          throw new InvalidCacheLoadException("CacheLoader returned null for key " + key + ".");
        }
        // 加载成功记录,此处扩展点,默认为空
        statsCounter.recordLoadSuccess(loadingValueReference.elapsedNanos());
        // 最后将值存入缓存容器中,返回(论hash的重要性)
        storeLoadedValue(key, hash, loadingValueReference, value);
        return value;
      } finally {
        if (value == null) {
          statsCounter.recordLoadException(loadingValueReference.elapsedNanos());
          removeLoadingValue(key, hash, loadingValueReference);
        }
      }
    }

  /**
   * Invokes {@code future.}{@link Future#get() get()} uninterruptibly.
   * To get uninterruptibility and remove checked exceptions, see
   * {@link Futures#getUnchecked}.
   *
   * <p>If instead, you wish to treat {@link InterruptedException} uniformly
   * with other exceptions, see {@link Futures#get(Future, Class) Futures.get}
   * or {@link Futures#makeChecked}.
   *
   * @throws ExecutionException if the computation threw an exception
   * @throws CancellationException if the computation was cancelled
   */
  public static <V> V getUninterruptibly(Future<V> future)
      throws ExecutionException {
    boolean interrupted = false;
    try {
      while (true) {
        try {
          return future.get();
        } catch (InterruptedException e) {
          interrupted = true;
        }
      }
    } finally {
      if (interrupted) {
        Thread.currentThread().interrupt();
      }
    }
  }

  如上,就是获取一个缓存的过程。总结下来就是:

  1. 先使用hash定位到 segment中,然后尝试直接到 map中获取结果;
  2. 如果没有找到或者已过期,则调用客户端的load()方法加载原始数据;
  3. 将结果存入 segment.map 中,本地缓存生效;
  4. 记录命中情况,读取计数;

3. 如何处理过期?

  其实刚刚我们在看get()方法时,就看到了一些端倪。

  要确认两点: 1. 是否有创建异步清理线程进行过期数据清理? 2. 清理过程中,原始数据如何自处?

  其实guava的清理时机是在加载数据之前进行的!

    // com.google.common.cache.LocalCache
    // static class Segment<K, V> extends ReentrantLock
    // 整个 Segment 继承了 ReentrantLock, 所以 LocalCache 的锁是依赖于 ReentrantLock 实现的
    V lockedGetOrLoad(K key, int hash, CacheLoader<? super K, V> loader)
        throws ExecutionException {
      ReferenceEntry<K, V> e;
      ValueReference<K, V> valueReference = null;
      LoadingValueReference<K, V> loadingValueReference = null;
      boolean createNewEntry = true;

      lock();
      try {
        // re-read ticker once inside the lock
        long now = map.ticker.read();
        // 在更新值前,先把过期数据清除
        preWriteCleanup(now);

        int newCount = this.count - 1;
        AtomicReferenceArray<ReferenceEntry<K, V>> table = this.table;
        int index = hash & (table.length() - 1);
        ReferenceEntry<K, V> first = table.get(index);

        // 处理 hash 碰撞时的链表查询
        for (e = first; e != null; e = e.getNext()) {
          K entryKey = e.getKey();
          if (e.getHash() == hash && entryKey != null
              && map.keyEquivalence.equivalent(key, entryKey)) {
            valueReference = e.getValueReference();
            if (valueReference.isLoading()) {
              createNewEntry = false;
            } else {
              V value = valueReference.get();
              if (value == null) {
                enqueueNotification(entryKey, hash, valueReference, RemovalCause.COLLECTED);
              } else if (map.isExpired(e, now)) {
                // This is a duplicate check, as preWriteCleanup already purged expired
                // entries, but let‘s accomodate an incorrect expiration queue.
                enqueueNotification(entryKey, hash, valueReference, RemovalCause.EXPIRED);
              } else {
                recordLockedRead(e, now);
                statsCounter.recordHits(1);
                // we were concurrent with loading; don‘t consider refresh
                return value;
              }

              // immediately reuse invalid entries
              writeQueue.remove(e);
              accessQueue.remove(e);
              this.count = newCount; // write-volatile
            }
            break;
          }
        }

        // 如果是第一次加载,则先创建 Entry, 进入 load() 逻辑
        if (createNewEntry) {
          loadingValueReference = new LoadingValueReference<K, V>();

          if (e == null) {
            e = newEntry(key, hash, first);
            e.setValueReference(loadingValueReference);
            table.set(index, e);
          } else {
            e.setValueReference(loadingValueReference);
          }
        }
      } finally {
        unlock();
        postWriteCleanup();
      }

      if (createNewEntry) {
        try {
          // Synchronizes on the entry to allow failing fast when a recursive load is
          // detected. This may be circumvented when an entry is copied, but will fail fast most
          // of the time.
          // 同步加载数据源值, 从 loader 中处理
          synchronized (e) {
            return loadSync(key, hash, loadingValueReference, loader);
          }
        } finally {
            // 记录未命中计数,默认为空
          statsCounter.recordMisses(1);
        }
      } else {
        // The entry already exists. Wait for loading.
        return waitForLoadingValue(e, key, valueReference);
      }
    }
    // 我们来细看下 preWriteCleanup(now);  是如何清理过期数据的
    /**
     * Performs routine cleanup prior to executing a write. This should be called every time a
     * write thread acquires the segment lock, immediately after acquiring the lock.
     *
     * <p>Post-condition: expireEntries has been run.
     */
    @GuardedBy("this")
    void preWriteCleanup(long now) {
      runLockedCleanup(now);
    }
    void runLockedCleanup(long now) {
        // 再次确保清理数据时,锁是存在的
      if (tryLock()) {
        try {
            // 当存在特殊类型数据时,可以先进行清理
          drainReferenceQueues();
          // 清理过期数据,按时间清理
          expireEntries(now); // calls drainRecencyQueue
          // 读计数清零
          readCount.set(0);
        } finally {
          unlock();
        }
      }
    }
    /**
     * Drain the key and value reference queues, cleaning up internal entries containing garbage
     * collected keys or values.
     */
    @GuardedBy("this")
    void drainReferenceQueues() {
      if (map.usesKeyReferences()) {
        drainKeyReferenceQueue();
      }
      if (map.usesValueReferences()) {
        drainValueReferenceQueue();
      }
    }
    @GuardedBy("this")
    void expireEntries(long now) {
        // 更新最近的访问队列
      drainRecencyQueue();

      ReferenceEntry<K, V> e;
      // 从头部开始取元素,如果过期就进行清理
      // 写队列超时: 清理, 访问队列超时: 清理
      while ((e = writeQueue.peek()) != null && map.isExpired(e, now)) {
        if (!removeEntry(e, e.getHash(), RemovalCause.EXPIRED)) {
          throw new AssertionError();
        }
      }
      while ((e = accessQueue.peek()) != null && map.isExpired(e, now)) {
        if (!removeEntry(e, e.getHash(), RemovalCause.EXPIRED)) {
          throw new AssertionError();
        }
      }
    }
    @Override
    public ReferenceEntry<K, V> peek() {
      ReferenceEntry<K, V> next = head.getNextInAccessQueue();
      return (next == head) ? null : next;
    }
    // 清理指定类型的元素,如 过期元素
    @GuardedBy("this")
    boolean removeEntry(ReferenceEntry<K, V> entry, int hash, RemovalCause cause) {
      int newCount = this.count - 1;
      AtomicReferenceArray<ReferenceEntry<K, V>> table = this.table;
      int index = hash & (table.length() - 1);
      ReferenceEntry<K, V> first = table.get(index);

      for (ReferenceEntry<K, V> e = first; e != null; e = e.getNext()) {
        if (e == entry) {
          ++modCount;
          // 调用 removeValueFromChain, 清理具体元素
          ReferenceEntry<K, V> newFirst = removeValueFromChain(
              first, e, e.getKey(), hash, e.getValueReference(), cause);
          newCount = this.count - 1;
          table.set(index, newFirst);
          this.count = newCount; // write-volatile
          return true;
        }
      }

      return false;
    }
    @GuardedBy("this")
    @Nullable
    ReferenceEntry<K, V> removeValueFromChain(ReferenceEntry<K, V> first,
        ReferenceEntry<K, V> entry, @Nullable K key, int hash, ValueReference<K, V> valueReference,
        RemovalCause cause) {
      enqueueNotification(key, hash, valueReference, cause);
      // 清理两队列
      writeQueue.remove(entry);
      accessQueue.remove(entry);

      if (valueReference.isLoading()) {
        valueReference.notifyNewValue(null);
        return first;
      } else {
        return removeEntryFromChain(first, entry);
      }
    }
    @GuardedBy("this")
    @Nullable
    ReferenceEntry<K, V> removeEntryFromChain(ReferenceEntry<K, V> first,
        ReferenceEntry<K, V> entry) {
      int newCount = count;
      // 普通情况,则直接返回 next 元素链即可
      // 针对有first != entry 的情况,则依次将 first 移动到队尾,然后跳到下一个元素返回
      ReferenceEntry<K, V> newFirst = entry.getNext();
      for (ReferenceEntry<K, V> e = first; e != entry; e = e.getNext()) {
        // 将first链表倒转到 newFirst 尾部
        ReferenceEntry<K, V> next = copyEntry(e, newFirst);
        if (next != null) {
          newFirst = next;
        } else {
          removeCollectedEntry(e);
          newCount--;
        }
      }
      this.count = newCount;
      return newFirst;
    }
    

  到此,我们就完整的看到了一个 key 的过期处理流程了。总结就是:

  1. 在读取的时候,触发清理操作;
  2. 使用 ReentrantLock 来进行线程安全的更新;
  3. 读取计数器清零,元素数量减少;

  3. 怎样主动放入一个缓存?

  这个和普通的map的put方法一样,简单看下即可!

    // com.google.common.cache.LocalCache$LocalManualCache
    @Override
    public void put(K key, V value) {
      localCache.put(key, value);
    }

    // com.google.common.cache.LocalCache
  @Override
  public V put(K key, V value) {
    checkNotNull(key);
    checkNotNull(value);
    int hash = hash(key);
    return segmentFor(hash).put(key, hash, value, false);
  }

    // com.google.common.cache.LocalCache$Segment
    @Nullable
    V put(K key, int hash, V value, boolean onlyIfAbsent) {
      lock();
      try {
        long now = map.ticker.read();
        preWriteCleanup(now);

        int newCount = this.count + 1;
        if (newCount > this.threshold) { // ensure capacity
          expand();
          newCount = this.count + 1;
        }

        AtomicReferenceArray<ReferenceEntry<K, V>> table = this.table;
        int index = hash & (table.length() - 1);
        ReferenceEntry<K, V> first = table.get(index);

        // Look for an existing entry.
        for (ReferenceEntry<K, V> e = first; e != null; e = e.getNext()) {
          K entryKey = e.getKey();
          if (e.getHash() == hash && entryKey != null
              && map.keyEquivalence.equivalent(key, entryKey)) {
            // We found an existing entry.

            ValueReference<K, V> valueReference = e.getValueReference();
            V entryValue = valueReference.get();

            if (entryValue == null) {
              ++modCount;
              if (valueReference.isActive()) {
                enqueueNotification(key, hash, valueReference, RemovalCause.COLLECTED);
                setValue(e, key, value, now);
                newCount = this.count; // count remains unchanged
              } else {
                setValue(e, key, value, now);
                newCount = this.count + 1;
              }
              this.count = newCount; // write-volatile
              evictEntries();
              return null;
            } else if (onlyIfAbsent) {
              // Mimic
              // "if (!map.containsKey(key)) ...
              // else return map.get(key);
              recordLockedRead(e, now);
              return entryValue;
            } else {
              // clobber existing entry, count remains unchanged
              ++modCount;
              enqueueNotification(key, hash, valueReference, RemovalCause.REPLACED);
              setValue(e, key, value, now);
              evictEntries();
              return entryValue;
            }
          }
        }

        // Create a new entry.
        ++modCount;
        ReferenceEntry<K, V> newEntry = newEntry(key, hash, first);
        setValue(newEntry, key, value, now);
        table.set(index, newEntry);
        newCount = this.count + 1;
        this.count = newCount; // write-volatile
        evictEntries();
        return null;
      } finally {
        unlock();
        postWriteCleanup();
      }
    }

  就这样,基于guava的二级缓存功能就搞定了。其实并没有多高深!

老话:感谢那些折磨你的人!

原文地址:https://www.cnblogs.com/yougewe/p/10892173.html

时间: 2024-10-13 14:36:49

用guava快速打造两级缓存能力的相关文章

用Docker快速打造企业Paas云计算平台

用Docker快速打造企业Paas平台 课程特色 Docker就像一场森林大火重新创造了一个全新的云计算领域,Docker作为云计算分布式软件工程的革命正在深刻地改变传统分布式系统的开发.测试和部署.其影响的神速远胜于云计算第一代技术OpenStack等:Docker不仅是历史上最流行的开源项目之一,而且也从根本上改变了人们构 建应用程序的思维方式.它可以把程序及依赖的二进制文件.第三方库等封装在一起,运行在任何安装 Docker Daemon 的服务器上,它有望成为未来软件自动化部署的标准.

揭秘 vivo 如何打造千万级 DAU 活动中台 - 启航篇

本文首发于 vivo互联网技术 微信公众号? 链接: https://mp.weixin.qq.com/s/Ka1pjJKuFwuVL8B-t7CwuA 作者:悟空中台研发团队 一.缘起 - 什么是悟空活动中台? 随着 vivo 互联网用户量级不断增加,应用商店.官网商城. 游戏中心和浏览器等 vivo 官方产品相继进入存量用户运营时代.在这种大背景下,营销活动日益增多,传统活动开发模式已经不能满足井喷式且多样化的需求,项目开发和产品运营过程中遇到种种困难: 1. 浏览器团队开发的活动组件, 商

快速打造自己开发环境 vagrant + virtualbox

工欲善其事必先利其器,开发环境 和 开发工具 就是 我们开发人员的剑,所以我们需要一个快并且好用的剑 刚开始做开发的时候的都是把开发环境 配置在 自己的电脑上,随着后面我们接触的东西越来越多,慢慢的电脑上都是各种环境了,php,java,python,nodejs等等,非常麻烦,并且经常由于某种原因就把电脑重装了,ORZ,所以环境都要重来.所以打造一个属于自己并且可以移动的环境是非常重要的. vagrant就是一款构建虚拟开发环境的工具,支持window,linux,mac,总有一款适合你.并且

“匿名聊聊”作者谈如何打造现象级爆款小程序

前段时间小程序“匿名聊聊”刷爆了朋友圈,可惜后面被屏蔽了.作为第一款现象级呈现爆炸级传播的小程序它是如何做到的呢?我们就跟随“匿名聊聊”作者来聊聊如何打造现象级爆款小程序. 作为第一款现象级呈现爆炸级传播的小程序,“匿名聊聊”背后的公司:朋友印象是一家深耕社交产品的公司,创始人栗浩洋和魏志成两人都公开表示,这次的“匿名聊聊”是扔出的一个问路的石子,真正的生化武器和核弹还在后面. 被寄予厚望的小程序自今年1月上线以来,一直表现的冷冷清清.流量入口没有优先级的倾斜,用户获取提供的也是模糊搜索,即便微

HERE 使用 AWS EF 和 JFrog Artifactory 打造百万级工件 CI&amp;CD

本篇文章是根据 AWS 发布在 Youtube 上的视频资料翻译并整理而来,介绍的是 AWS re:Invent 2017大会上分享的 HERE Technology 使用 AWS EF 和 JFrog Artifactory 打造百万级工件 CI&CD 系统,支持数千活跃开发者的案例. 本次主讲人有三位,分别是 Suresh Prem(HERE principal system engineer),Yoav Landman(JFrog CTO.Co-Founder)和 Yong Kim(AWS

guava快速入门

Guava工程包含了若干被Google的 Java项目广泛依赖 的核心库,例如:集合 [collections] .缓存 [caching] .原生类型支持 [primitives support] .并发库 [concurrency libraries] .通用注解 [common annotations] .字符串处理 [string processing] .I/O 等等. guava类似Apache Commons工具集 基本工具包Base Optional guava的Optional

google Guava 快速入门

Guava工程包含了若干被Google的 Java项目广泛依赖 的核心库,例如:集合 [collections] .缓存 [caching] .原生类型支持 [primitives support] .并发库 [concurrency libraries] .通用注解 [common annotations] .字符串处理 [string processing] .I/O 等等. guava类似Apache Commons工具集 基本工具包Base Optional guava的Optional

初二|两级分化时期,你的学习规律养成了吗?

初中数学, 在初中养成良好的学习习惯有助于高中系统性学习,那么你初中的学习规律养成了吗?俗话说,初一不分上下,初二两级分化,初三天上地下,为什么会如此分,我们一起来了解一下. 1 从知识层面讲,初二所学的科目内容多,难度大. 初一我们所学的知识还是蛮多的,而且这些知识都是我们整个初中所学知识的基础部分.基本概念和基本定理比较多,需要记忆的东西也比较多,但是知识的难度都不是很大,而到了初二,数学知识点和难度都有了大幅度的提升,尤其是几何辅助线的大量涉及使很多同学很难适应,摸不着头脑,分式根式的加入

Hibernate-二级缓存

与Session相对的是,SessionFactory也提供了相应的缓存机制.SessionFactory缓存可以依据功能和目的的不同而划分为内置缓存和外置缓存. SessionFactory的内置缓存中存放了映射元数据和预定义SQL语句,映射元数据是映射文件中数据的副本,而预定义SQL语句是在 Hibernate初始化阶段根据映射元数据推导出来的.SessionFactory的内置缓存是只读的,应用程序不能修改缓存中的映射元数据和预定义 SQL语句,因此SessionFactory不需要进行内