对评分矩阵进行分解,SVD与LSI

摘自推荐系统

一、SVD奇异值分解

参考 https://www.cnblogs.com/lzllovesyl/p/5243370.html

1、SVD简介

SVD(singular value decomposition)。其作用就是将一个复杂的矩阵分解成3个小的矩阵。

原文地址:https://www.cnblogs.com/ylxn/p/10686256.html

时间: 2024-11-09 08:58:48

对评分矩阵进行分解,SVD与LSI的相关文章

用 GSL 求解超定方程组及矩阵的奇异值分解(SVD)

用 GSL 求解超定方程组及矩阵的奇异值分解(SVD) 最近在学习高动态图像(HDR)合成的算法,其中需要求解一个超定方程组,因此花了点时间研究了一下如何用 GSL 来解决这个问题. GSL 里是有最小二乘法拟合(Least-Squares Fitting)的相关算法,这些算法的声明在 gsl_fit.h 中,所以直接用 GSL 提供的 gsl_fit_linear 函数就能解决这个问题.不过我想顺便多学习一些有关 SVD 的知识.所以就没直接使用 gsl_fit_linear 函数. SVD

矩阵特征值分解与奇异值分解含义解析及应用

此文有一半转载自他出,主要在这进行个整理,具体内容文中都有相关的转载链接. 特征值与特征向量的几何意义 矩阵的乘法是什么,别只告诉我只是"前一个矩阵的行乘以后一个矩阵的列",还会一点的可能还会说"前一个矩阵的列数等于后一个矩阵的行数才能相乘",然而,这里却会和你说--那都是表象. 矩阵乘法真正的含义是变换,我们学<线性代数>一开始就学行变换列变换,那才是线代的核心--别会了点猫腻就忘了本--对,矩阵乘法 就是线性变换,若以其中一个向量A为中心,则B的作用

奇异分解(SVD)理论介绍

一.前言 奇异值分解(Singular Value Decomposition,以下简称SVD)是在机器学习领域广泛应用的算法,主要应用如下: 信息检索(LSA:隐性语义索引,LSA:隐性语义分析),分解后的奇异值代表了文章的主题或者概念,信息检索的时候同义词,或者说同一主题下的词会映射为同一主题,这样就可以提高搜索效率 数据压缩:通过奇异值分解,选择能量较大的前N个奇异值来代替所有的数据信息,这样可以降低噪声,节省空间. 推荐系统:主要是降噪,矩阵变换至低维空间(分解后还原的矩阵元素值作为原本

Matlab梯度下降解决评分矩阵分解

for iter = 1:num_iters %梯度下降 用户向量 for i = 1:m %返回有0有1 是逻辑值 ratedIndex1 = R_training(i,:)~=0 ; %U(i,:) * V' 第i个用户分别对每个电影的评分 %sumVec1 第i个用户分别对每个电影的评分 减去真实值 sumVec1 = ratedIndex1 .* (U(i,:) * V' - R_training(i,:)); product1 = sumVec1 * V; derivative1 =

奇异分解(SVD) 案例--用户与商家稀疏矩阵

? ? ? ? 一.稀疏矩阵(sparse matrix): 1.1 介绍: 矩阵中非零元素的个数远远小于矩阵元素的总数,并且非零元素的分布没有规律,通常认为矩阵中非零元素的总数比上矩阵所有元素总数的值小于等于0.05时,则称该矩阵为稀疏矩阵.因此本文中的数字为50*200=10000,有效数据应该在10000*0.05=500. 1.2 数据构建: 本文模拟50位用户对200名用户进行评价,评价数量只有500个(满足稀疏性要求). 评价分数:使用随机函数,取值从1-5随机. 500样本数由来:

机器学习基础篇——矩阵特征值分解含义解析及应用

特征值与特征向量的几何意义: 矩阵的乘法是什么,别只告诉我只是"前一个矩阵的行乘以后一个矩阵的列",还会一点的可能还会说"前一个矩阵的列数等于后一个矩阵的行数才能相乘",然而,这里却会和你说--那都是表象. 矩阵乘法真正的含义是变换,我们学<线性代数>一开始就学行变换列变换,矩阵乘法就是线性变换,若以其中一个向量A为中心,则B的作用主要是使A发生如下变化: 伸缩 clf;     %用来清除图形的命令 A = [0, 1, 1, 0, 0;... 1, 

数值分析--矩阵QR分解的三种方法

QR分解法是目前求一般矩阵全部特征值的最有效并广泛应用的方法,一般矩阵先经过正交相似变化成为Hessenberg矩阵,然后再应用QR方法求特征值和特征向量.它是将矩阵分解成一个正规正交矩阵Q与上三角形矩阵R,所以称为QR分解法,与此正规正交矩阵的通用符号Q有关.

讲一下numpy的矩阵特征值分解

主要还是调包: from numpy.linalg import eig 特征值分解:  A = P*B*PT  当然也可以写成 A = PT*B*P  其中B为对角元为A的特征值的对角矩阵. 首先A得正定,然后才能在实数域上分解, >>> A = np.random.randint(-10,10,(4,4)) >>> A array([[ 6, 9, -10, -1], [ 5, 9, 5, -5], [ -8, 7, -4, 4], [ -1, -9, 0, 6]]

矩阵特征分解介绍及雅克比 Jacobi 方法实现特征值和特征向量的求解 C++/OpenCV/Eigen

对角矩阵(diagonal matrix):只在主对角线上含有非零元素,其它位置都是零,对角线上的元素可以为0或其它值.形式上,矩阵D是对角矩阵,当且仅当对于所有的i≠j, Di,j= 0. 单位矩阵就是对角矩阵,对角元素全部是1.我们用diag(v)表示一个对角元素由向量v中元素给定的对角方阵.对角矩阵受到关注的部分原因是对角矩阵的乘法计算很高效.计算乘法diag(v)x,我们只需要将x中的每个元素xi放大vi倍.换言之,diag(v)x = v⊙x.计算对角方阵的逆矩阵也很高效.对角方阵的逆