「luogu4462」[CQOI2018]异或序列

「luogu4462」[CQOI2018]异或序列

一句话题意

输入 \(n\) 个数,给定\(k\),共 \(m\) 组询问,输出第 \(i\) 组询问 \(l_i\) \(r_i\) 中有多少个连续子序列的异或和等于 \(k\)。数据范围均在 \([0,1e5]\)。

本题不强制在线,故莫队。
记序列 \(a\) 的前缀异或和 \(pre\),用一个桶 \(t_i\) 记录当前查询区间内前缀异或和为 \(i\) 的数量。

代码如下:

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
inline int in() {
    int x=0;char c=getchar();bool f=false;
    while(c<'0'||c>'9') f|=c=='-', c=getchar();
    while(c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48), c=getchar();
    return f?-x:x;
}

const int N = 1e5+5;

int n, m, k, cur, pre[N], t[N<<1], blo, bl[N], ans[N];

struct query {
    int l, r, id;
    inline friend bool operator < (const query &x, const query &y) {
        return bl[x.l]==bl[y.l]?x.r<y.r:x.l<y.l;
    }
}q[N];

inline void add(int u) {
    cur+=t[u^k];
    t[u]++;
}

inline void rem(int u) {
    t[u]--;
    cur-=t[u^k];
}

int main() {
    n=in(), m=in(), k=in();
    blo=(int)sqrt(n+1);
    for(int i=1;i<=n;++i) {
        bl[i]=(i-1)/blo+1;
        pre[i]=pre[i-1]^in();
    }
    for(int i=1;i<=m;++i) q[i]=(query){in()-1, in(), i};
    std::sort(q+1, q+1+m);

    for(int i=1, l=1, r=0;i<=m;++i) {
        for(;r<q[i].r;add(pre[++r]));
        for(;r>q[i].r;rem(pre[r--]));
        for(;l<q[i].l;rem(pre[l++]));
        for(;l>q[i].l;add(pre[--l]));
        ans[q[i].id]=cur;
    }
    for(int i=1;i<=m;++i) printf("%d\n", ans[i]);
    return 0;
}

原文地址:https://www.cnblogs.com/15owzLy1-yiylcy/p/10518315.html

时间: 2024-11-07 23:49:42

「luogu4462」[CQOI2018]异或序列的相关文章

P4462 [CQOI2018]异或序列

题目描述 已知一个长度为n的整数数列 a1,a2,...,ana_1,a_2,...,a_na1?,a2?,...,an? ,给定查询参数l.r,问在 al,al+1,...,ara_l,a_{l+1},...,a_ral?,al+1?,...,ar? 区间内,有多少子序列满足异或和等于k.也就是说,对于所有的x,y (I ≤ x ≤ y ≤ r),能够满足 ax?ax+1?...?ay=ka_x \bigoplus a_{x+1} \bigoplus ... \bigoplus a_y = k

Luogu P4462 [CQOI2018]异或序列

一道稍微要点脑子的莫队题,原来省选也会搬CF原题 首先利用\(xor\)的性质,我们可以搞一个异或前缀和的东西 每一次插入一个数,考虑它和之前已经加入的数能产生多少贡献 记一下之前的异或总值,然后还是利用异或的性质再异或一遍 这个我们再开一个数据统计一下出现次数. 但是唯一要注意的就是一些细节问题,尤其是左端点加入(or删除)的时候要减一 然后就可以水过了(我的代码莫队的时候写的有点骚) CODE #include<cstdio> #include<cctype> #include

[CQOI2018] 异或序列

题目链接:戳我 哈哈哈我竟然秒切了省选题 莫队+异或. 考虑异或的性质,一个数同时异或两次等于没有进行操作.那么我们设a[i]为前i个数的异或和,显然对于一个区间\([l,now]\),\(a[l-1]\oplus a[now]\)就是这个区间里面所有的数的异或和.如果\(a[l-1]\oplus a[now]=k\)那么ans++,这等同于\(a[l-1]=k\oplus a[now]\). 代码如下: #include<iostream> #include<cstdio> #i

P4462 [CQOI2018]异或序列 莫队 异或

题目描述 已知一个长度为n的整数数列a_1,a_2,...,a_na1?,a2?,...,an?,给定查询参数l.r,问在a_l,a_{l+1},...,a_ral?,al+1?,...,ar?区间内,有多少子串满足异或和等于k.也就是说,对于所有的x,y (I ≤ x ≤ y ≤ r),能够满足a_x \bigoplus a_{x+1} \bigoplus ... \bigoplus a_y = kax??ax+1??...?ay?=k的x,y有多少组. 输入格式 输入文件第一行,为3个整数n

[CQOI2018]异或序列 题解

转化题意: 给n个整数,给一个值k,m个询问,每个询问给出一个区间,求区间里有多少对数异或为k 注意到n个整数的值比较小,可以用桶存值的 我们用前缀异或和即可实现区间转化为数(满足区间减法即可 1≤n,m≤1e5,0≤k,值的大小≤1e5, 然后用莫队实现n sqrt(n),空间为o(值的大小) 操作:分块排序,每次移动区间时 添加为存数并更新答案o(1) 删除为更新答案并删数o(1) #include<bits/stdc++.h> #define LL long long #define I

P4462 [CQOI2018]异或序列 莫队

题意:给定数列 \(a\) 和 \(k\) ,询问区间 \([l,r]\) 中有多少子区间满足异或和为 \(k\). 莫队.我们可以记录前缀异或值 \(a_i\),修改时,贡献为 \(c[a_i\bigoplus k]\) . #include<cstdio> #include<iostream> #include<algorithm> #include<cmath> #include<cstring> #define R register in

[LuoguP4462][CQOI2018]异或序列

闲话 这是一篇 在线算法 的题解!!! 用了分块,虽然比莫队差一点点点点,但怎么说也是一种优美的解法. 只是比较考验细节,调了好几个小时啊啊啊啊啊... wtcl... 正片 数列分块的思想(熟悉的可以略过) 数列分块又被称作数列的平方分割. 数列分块是将整段数列分为均匀的几块,使得每块长度为\(b\)(末块的最后一个是第\(n\)个,并不是直接向后\(+b\)个,注意特判).这里,\(b\)常取\(\sqrt{n}\). 然后对每个块都维护一些必要的信息. 比如:P3372 [模板]线段树 1

CQOI2018异或序列 [莫队]

莫队板子 用于复习 #include <cstdio> #include <cstdlib> #include <algorithm> #include <cmath> #include <cstring> #include <map> #define Sqr(x) ((x)*(x)) using namespace std; const int N = 1e5 + 5; struct Q{ int x, y, id; }q[N];

AC日记——「SDOI2017」序列计数 LibreOJ 2002

「SDOI2017」序列计数 思路: 矩阵快速幂: 代码: #include <bits/stdc++.h> using namespace std; #define mod 20170408 #define ll long long struct MatrixType { int n,m; ll ai[105][105]; void mem(int n_,int m_) { n=n_,m=m_; for(int i=0;i<=n;i++) for(int v=0;v<=m;v++