P2015 二叉苹果树 树形dp

  

题目描述

有一棵苹果树,如果树枝有分叉,一定是分2叉(就是说没有只有1个儿子的结点)

这棵树共有N个结点(叶子点或者树枝分叉点),编号为1-N,树根编号一定是1。

我们用一根树枝两端连接的结点的编号来描述一根树枝的位置。下面是一颗有4个树枝的树

2   5
 \ /
  3   4
   \ /
    1

现在这颗树枝条太多了,需要剪枝。但是一些树枝上长有苹果。

给定需要保留的树枝数量,求出最多能留住多少苹果。

输入输出格式

输入格式:

第1行2个数,N和Q(1<=Q<= N,1<N<=100)。

N表示树的结点数,Q表示要保留的树枝数量。接下来N-1行描述树枝的信息。

每行3个整数,前两个是它连接的结点的编号。第3个数是这根树枝上苹果的数量。

每根树枝上的苹果不超过30000个。

输出格式:

一个数,最多能留住的苹果的数量。

输入输出样例

输入样例#1: 复制

5 2
1 3 1
1 4 10
2 3 20
3 5 20

输出样例#1: 复制

21

树形dp入门题f[u][i]=max(f[u][i],f[u][i−j−1]+f[v][j]+e[i].w)( 1≤i≤min(q,sz[u]),0≤j≤min(sz[v],i−1) )注意j k 的枚举范围

#include<bits/stdc++.h>
using namespace std;
//input by bxd
#define rep(i,a,b) for(int i=(a);i<=(b);i++)
#define repp(i,a,b) for(int i=(a);i>=(b);--i)
#define RI(n) scanf("%d",&(n))
#define RII(n,m) scanf("%d%d",&n,&m)
#define RIII(n,m,k) scanf("%d%d%d",&n,&m,&k)
#define RS(s) scanf("%s",s);
#define ll long long
#define pb push_back
#define REP(i,N)  for(int i=0;i<(N);i++)
#define CLR(A,v)  memset(A,v,sizeof A)
//////////////////////////////////
#define inf 0x3f3f3f3f
const int N=205;
const int M=50005;
int head[M],pos;
struct Edge
{
    int nex,to,v;
}edge[M];
void add(int a,int b,int c)
{
    edge[++pos].nex=head[a];
    head[a]=pos;
    edge[pos].to=b;
    edge[pos].v=c;
}
int n,m;
int dp[N][N];
int siz[N];

void dfs(int u,int fa)
{
    for(int i=head[u];i;i=edge[i].nex)
    {
        int v=edge[i].to;
        if(v==fa)continue;
        dfs(v,u);
        siz[u]+=siz[v]+1;
        for(int j=min(m,siz[u]);j;--j)//保留的边数
        for(int k=min(j-1,siz[v]);k>=0;--k)//改子树保留的边数
        dp[u][j]=max(dp[u][j],dp[u][j-k-1]+dp[v][k]+edge[i].v);//注意差值为1
    }
}

int main()
{
    RII(n,m);
    rep(i,1,n-1)
    {
        int a,b,c;RIII(a,b,c);
        add(a,b,c);add(b,a,c);
    }
    dfs(1,0);
    cout<<dp[1][m];
    return 0;
}



原文地址:https://www.cnblogs.com/bxd123/p/10834633.html

时间: 2024-11-05 11:51:04

P2015 二叉苹果树 树形dp的相关文章

P2015 二叉苹果树[树形dp+背包]

题目描述 有一棵苹果树,如果树枝有分叉,一定是分2叉(就是说没有只有1个儿子的结点) 这棵树共有N个结点(叶子点或者树枝分叉点),编号为1-N,树根编号一定是1. 我们用一根树枝两端连接的结点的编号来描述一根树枝的位置.下面是一颗有4个树枝的树 2 5 \ / 3 4 \ / 1 现在这颗树枝条太多了,需要剪枝.但是一些树枝上长有苹果. 给定需要保留的树枝数量,求出最多能留住多少苹果. 解析 一道很简单的树形dp,然而我调了半天都没调出来,就是菜. 容易看出状态\(dp[x][i]\)表示以\(

【P2015】二叉苹果树 (树形DP分组背包)

题目描述 有一棵苹果树,如果树枝有分叉,一定是分2叉(就是说没有只有1个儿子的结点) 这棵树共有N个结点(叶子点或者树枝分叉点),编号为1-N,树根编号一定是1. 现在这颗树枝条太多了,需要剪枝.但是一些树枝上长有苹果. 给定需要保留的树枝数量,求出最多能留住多少苹果. 输入输出格式 输入格式: 第1行2个数,N和Q(1<=Q<= N,1<N<=100). N表示树的结点数,Q表示要保留的树枝数量.接下来N-1行描述树枝的信息. 每行3个整数,前两个是它连接的结点的编号.第3个数是

LuoguP2015 二叉苹果树 树形dp

这道题被我秒了是我太强了还是这道题太水了 苹果在树枝上,然后用子树更新节点的f数组即可. code 1 #include<iostream> 2 #include<cstdio> 3 #include<cstring> 4 #include<vector> 5 using namespace std; 6 7 const int Maxn = 110; 8 9 struct Edge{ 10 int to,wi,ne; 11 }edges[Maxn<&

luogu P2015 二叉苹果树

P2015 二叉苹果树 题目描述 有一棵苹果树,如果树枝有分叉,一定是分2叉(就是说没有只有1个儿子的结点) 这棵树共有N个结点(叶子点或者树枝分叉点),编号为1-N,树根编号一定是1. 我们用一根树枝两端连接的结点的编号来描述一根树枝的位置.下面是一颗有4个树枝的树 2        5 \     / 3   4 \ / 1 现在这颗树枝条太多了,需要剪枝.但是一些树枝上长有苹果. 给定需要保留的树枝数量,求出最多能留住多少苹果. 输入输出格式 输入格式: 第1行2个数,N和Q(1<=Q<

MZOJ 1134 &amp;&amp; LuoGu P2015 二叉苹果树

MZOJ 1134 && LuoGu P2015 二叉苹果树     [传送门] #include<bits/stdc++.h> using namespace std; const int maxn=500; int N,Q; int head[maxn],k=0; int w[maxn][maxn],f[maxn][maxn]; struct edge{ int v,w,nxt; }e[maxn<<1]; void init(){ freopen("i

P2015 二叉苹果树

题目描述 有一棵苹果树,如果树枝有分叉,一定是分2叉(就是说没有只有1个儿子的结点) 这棵树共有N个结点(叶子点或者树枝分叉点),编号为1-N,树根编号一定是1. 我们用一根树枝两端连接的结点的编号来描述一根树枝的位置.下面是一颗有4个树枝的树 2 5 \ / 3 4 \ / 1 现在这颗树枝条太多了,需要剪枝.但是一些树枝上长有苹果. 给定需要保留的树枝数量,求出最多能留住多少苹果. 输入输出格式 输入格式: 第1行2个数,N和Q(1<=Q<= N,1<N<=100). N表示树

洛谷P2015 二叉苹果树(树状dp)

题目描述 有一棵苹果树,如果树枝有分叉,一定是分2叉(就是说没有只有1个儿子的结点) 这棵树共有N个结点(叶子点或者树枝分叉点),编号为1-N,树根编号一定是1. 我们用一根树枝两端连接的结点的编号来描述一根树枝的位置.下面是一颗有4个树枝的树 2 5 \ / 3 4 \ / 1 现在这颗树枝条太多了,需要剪枝.但是一些树枝上长有苹果. 给定需要保留的树枝数量,求出最多能留住多少苹果. 输入输出格式 输入格式: 第1行2个数,N和Q(1<=Q<= N,1<N<=100). N表示树

【树形背包(边)】【调试毒瘤】LuoGu P2015 二叉苹果树

这道题的状态转移方程极其好想,不会可以回家洗洗睡了 dp[now][j]=max(dp[now][j],dp[now][j-k-1]+dp[to][k]+edge[i].val) 但是!! 调试极其毒瘤! 本以为背包背的是边和点差不多,结果发现恶心至极 1 int DP(int now,int fa) 2 { 3 int sum=0; 4 for(int i=head[now],to;i!=-1;i=edge[i].nxt) 5 { 6 to=edge[i].to; 7 if(to==fa)co

洛谷—— P2015 二叉苹果树

https://www.luogu.org/problem/show?pid=2015 题目描述 有一棵苹果树,如果树枝有分叉,一定是分2叉(就是说没有只有1个儿子的结点) 这棵树共有N个结点(叶子点或者树枝分叉点),编号为1-N,树根编号一定是1. 我们用一根树枝两端连接的结点的编号来描述一根树枝的位置.下面是一颗有4个树枝的树 2 5 \ / 3 4 \ / 1 现在这颗树枝条太多了,需要剪枝.但是一些树枝上长有苹果. 给定需要保留的树枝数量,求出最多能留住多少苹果. 输入输出格式 输入格式