增广拉格朗日乘子法(Augmented Lagrange Method)

转载自:增广拉格朗日乘子法(Augmented Lagrange Method)

增广拉格朗日乘子法的作用是用来解决等式约束下的优化问题,

假定需要求解的问题如下:

    minimize   f(X)

    s.t.:     h(X)=0

其中,f:Rn->R; h:Rn->Rm

朴素拉格朗日乘子法的解决方案是:

    L(X,λ)=f(X)+μh(X);  μ:Rm

    此时,求解L对X和μ的偏导同时为零就可以得到最优解了。

增广拉格朗日乘子法的解决方案是:

    Lc(x,λ)=f(X)+μh(X)+1/2c|h(X)|2

    每次求出一个xi,然后按照梯度更新参数μ,c每次迭代逐渐增大(使用ALM方法好像还有一些假设条件)

    整个流程只需要几步就可以完成了,一直迭代就可得到最优解了。

    

参考文献:

  [1]Multiplier and Gradient Methods,1969

  [2]constrained optimization and lagrange multiplier methods(page 104),1982

wiki:https://en.wikipedia.org/wiki/Augmented_Lagrangian_method

Let us say we are solving the following constrained problem:

subject to

This problem can be solved as a series of unconstrained minimization problems. For reference, we first list the penalty method approach:

The penalty method solves this problem, then at the next iteration it re-solves the problem using a larger value of  (and using the old solution as the initial guess or "warm-start").

The augmented Lagrangian method uses the following unconstrained objective:

and after each iteration, in addition to updating, the variable  is also updated according to the rule

where  is the solution to the unconstrained problem at the kth step, i.e. 

The variable  is an estimate of the Lagrange multiplier, and the accuracy of this estimate improves at every step. The major advantage of the method is that unlike the penalty method, it is not necessary to take  in order to solve the original constrained problem. Instead, because of the presence of the Lagrange multiplier term,  can stay much smaller.

The method can be extended to handle inequality constraints. For a discussion of practical improvements, see.[4]

时间: 2024-12-15 19:48:03

增广拉格朗日乘子法(Augmented Lagrange Method)的相关文章

深入理解拉格朗日乘子法(Lagrange Multiplier) 和KKT条件

在求取有约束条件的优化问题时,拉格朗日乘子法(Lagrange Multiplier) 和KKT条件是非常重要的两个求取方法,对于等式约束的优化问题,可以应用拉格朗日乘子法去求取最优值:如果含有不等式约束,可以应用KKT条件去求取.当然,这两个方法求得的结果只是必要条件,只有当是凸函数的情况下,才能保证是充分必要条件.KKT条件是拉格朗日乘子法的泛化.之前学习的时候,只知道直接应用两个方法,但是却不知道为什么拉格朗日乘子法(Lagrange Multiplier) 和KKT条件能够起作用,为什么

拉格朗日乘子法(Lagrange Multiplier)和KKT条件

拉格朗日乘子法:对于等式约束的优化问题,求取最优值. KKT条件:对于含有不等式约束的优化问题,求取最优值. 最优化问题分类: (1)无约束优化问题: 常常使用Fermat定理,即求取的导数,然后令其为零,可求得候选最优值. (2)有等式约束的优化问题:, 使用拉格朗日乘子法,把等式约束用一个系数与写为一个式子,称为拉格朗日函数.再通过对各个参数求取导数,联立等式进行求取最优值. (3)有不等式约束的优化问题.,,. 把所有的不等式约束.等式约束和目标函数全部写为一个式子:. KKT条件的最优值

机器学习中的数学——拉格朗日乘子法

拉格朗日乘子法:应用在求有约束条件的函数的极值问题上. a. 对于没有约束的函数求极值,只要求导,令导函数等于零即可. b. 对于约束条件是等式的函数. 目标函数:f(x), 约束条件:g(x)=0 求解f(x)在此约束条件下的极值. 定义拉格朗日函数 : L(x,λ)=f(x)+ λg(x) 分别对参数求偏导数,置零.

拉格朗日乘子法

基本的拉格朗日乘子法是求函数f(x1,x2,...)在g(x1,x2,...)=0的约束条件下的极值的方法. 主要思想:引入一个新的参数λ(即拉格朗日乘子),将约束条件函数与原函数联系到一起,使能配成与变量数量相等的等式方程,从而求出得到原函数极值的各个变量的解. 假设需要求极值的目标函数为f(x,y),限制条件为φ(x,y)=M 解:设g(x,y)=M-φ(x,y) 定义一个新函数:F(x,y,λ)=f(x,y)+λg(x,y) 则用偏导数方法列出方程:?F/?x=0,?F/?y=0,?F/?

非负矩阵分解(3):拉格朗日乘子法求解

作者:桂. 时间:2017-04-07  07:11:54 链接:http://www.cnblogs.com/xingshansi/p/6679325.html 声明:欢迎被转载,不过记得注明出处哦~ 前言 最近发这类文章,动不动就被管理员从首页摘除,如果你觉得这个文章还说得过去,麻烦帮忙点个赞吧,这样移除的概率小一些.... 本文为非负矩阵分解系列第三篇,在第二篇中介绍了不同准则下乘法算法的推导及代码实现,这里不免有一个疑问:明明是一个约束的优化问题,虽然乘法算法巧妙地将其变为一个无约束优化

关于拉格朗日乘子法与KKT条件

关于拉格朗日乘子法与KKT条件 关于拉格朗日乘子法与KKT条件 目录 拉格朗日乘子法的数学基础 共轭函数 拉格朗日函数 拉格朗日对偶函数 目标函数最优值的下界 拉格朗日对偶函数与共轭函数的联系 拉格朗日对偶问题 如何显式的表述拉格朗日对偶问题 由定义消去下确界 隐式求解约束 共轭函数法 弱对偶 强对偶 原始问题与对偶问题的关系 最优条件 互补松弛条件 KKT条件 一般问题的KKT条件 凸问题的KKT条件 KKT条件的用途 拉格朗日乘数法的形象化解读 等式约束的拉格朗日乘子法 含有不等约束的情况

拉格朗日乘子法 那些年学过的高数

最近在做通信网络相关的仿真,今天拿到了一些别人仿真的代码来学习,其中看到了一个double Lambda[T_Node_Number][M][Low_iteration];的参数,注释写着拉格朗日乘子式.本来对于这个名词感觉很陌生,后来查了一些资料,才回忆起这似乎是大一高数曾经学过的知识,经查书,果不其然,高数下P113页 条件极值拉格朗日法讲的就是这个内容.以前被忽视的知识点,再次重现,我觉得要好好学习一下.一下是学习笔记: 如何理解 先看一个二维的例子:假设有函数:f(x,y),要求其极值(

拉格朗日乘子法与KKT条件

拉格朗日乘子法 \[ min \quad f = 2x_1^2+3x_2^2+7x_3^2 \\s.t. \quad 2x_1+x_2 = 1 \\ \quad \quad \quad 2x_2+3x_3 = 2 \] \[ min \quad f = 2x_1^2+3x_2^2+7x_3^2 +\alpha _1(2x_1+x_2- 1)+\alpha _2(2x_2+3x_3 - 2) \] \[ \dfrac{\partial f}{\partial x_1}=4x_1+2\alpha_1

【机器学习之数学】03 有约束的非线性优化问题——拉格朗日乘子法、KKT条件、投影法

目录 将有约束问题转化为无约束问题 拉格朗日法 KKT条件 拉格朗日法更新方程 凸优化问题下的拉格朗日法 罚函数法 对梯度算法进行修改,使其运用在有约束条件下 投影法 梯度下降法 to 投影梯度法 正交投影算子 References 相关博客 梯度下降法.最速下降法.牛顿法等迭代求解方法,都是在无约束的条件下使用的,而在有约束的问题中,直接使用这些梯度方法会有问题,如更新后的值不满足约束条件. 那么问题来了,如何处理有约束的优化问题?大致可以分为以下两种方式: 将有约束的问题转化为无约束的问题,