【Codeforces 851D Arpa and a list of numbers】

Arpa的数列要根据GCD变成好数列

·英文题,述大意:
      给出一个长度为n(n<=5000000)的序列,其中的元素a[i]<=106,然后输入两个数x,y(x,y<=109)现在有两种操作:①支付x的代价删除一个数。②支付y的代价将一个数加1。题目要求支付最少的代价,使得原序列所有元素的GCD不为1。

·分析:
      GCD不为1?那么就是说每个数至少有一个共同的非1因子。使所有数拥有同一个因子一定比使它们拥有两个相同因子容易,所以题目其实要求我们完成这个任务:对于某个因子a(就是一个数a),若将原序列所有的数,通过上述操作,使得它们都含有a这个因子的代价和为W,求出所有a中W的最小值。

      根据上文结论,一个相同比两个相同容易,所以呢这个最优解的因子x一定是一个素数(如果是合数就拆成两个或两个以上的素数因子了啊)。

      观察数据,考虑怎样的时间复杂度能够承受:
      从这题来看,相比于元素个数5*106,元素的范围106是一个较小的值,这个值有两种时间复杂度思考:一种是O(N),一种是O(NlogN)对吧?对!

      我们来细看每个元素,如果我们当前枚举因子x(即目标是让所有元素都能够被它整除),对于它只有两种选择:(1)删除(2)通过加1操作使它变成最近的那个a的倍数。很明显,我们需要取舍一番。怎样正确而快速地决策呢?

       由于我们已知了x,y。那么一个数加几个1能够满足比删除这个数的代价小呢?当然是最多加[x/y]次啦 ,这里设T=[x/y](向下取整)。所以我们不妨枚举每一个x的倍数区间,下图所示:

那么对于每一个区间里的元素:

如果它向前走T步以内能够到达3*x,那么我们选择加1绝对比删除它的代价小。反之,我们就删除这个数。下面分别计算两种方案下代价:

       ①通过加一操作:(kx-num[i])*y

       ②通过删除操作:x

       因此,推广地说,如果这个区间[(k-1)*x,kx]内有e1个元素选择方案一,e2个元素选择方案二,那么代价W为:

  W=(kx*e1-Sum(num[i]))*x+e2*y(其中,Sum表示一方案的所有元素的和)

      据此,维护两个前缀数组:

      (1)sum[i]: 表示小于i的元素的个数

      (2)tot[i]:  表示小于i的元素的和

然后整个过程就是:预处理素数和前缀和,然后枚举计算每个素数x的最优代价。由于每次区间的长度变化,所以时间复杂度为O(nlogn)   

      代码在这里:    

 1 #include<stdio.h>
 2 #include<algorithm>
 3 #define ll long long
 4 #define go(i,a,b) for(int i=a;i<=b;i++)
 5 const int N=2000003;int t,prime[N],n,a,sum[N],lim,T;
 6 ll x,y,ans,tot[N];
 7 void Prime()
 8 {
 9     bool no[N]={0};lim=1000000;
10     go(i,2,lim){if(!no[i])prime[++t]=i;
11     go(j,1,t)if(1ll*prime[j]*i<=lim){no[prime[j]*i]=1;}else break;}
12 }
13 int main()
14 {
15     scanf("%d%I64d%I64d",&n,&x,&y);T=x/y;
16     go(i,1,n)scanf("%d",&a),sum[a]++,tot[a]+=a;Prime();
17     go(i,1,lim+prime[t])sum[i]+=sum[i-1],tot[i]+=tot[i-1];ans=1e18;
18     go(j,1,t)
19     {
20         int l,r=0;ll res=0;while(r<=lim)
21         {
22             l=r;r+=prime[j];int p=std::max(l,r-T-1);
23             res+=1ll*(sum[p]-sum[l])*x+(1ll*r*(sum[r]-sum[p])-(tot[r]-tot[p]))*y;
24             if(r>lim)break;
25         }
26         ans=std::min(ans,res);
27     }
28     printf("%I64d\n",ans);return 0;
29 }//Paul_Guderian

有一天这首歌会变老就像老杨树上的枝芽

可我还会一遍遍歌唱它如同我的生命。————汪峰《我爱你中国》

时间: 2024-09-27 22:03:37

【Codeforces 851D Arpa and a list of numbers】的相关文章

codeforces 851D Arpa and a list of numbers

目录 codeforces 851D Arpa and a list of numbers 题意 题解 Code codeforces 851D Arpa and a list of numbers 题目传送门 题意 给出\(n\)个数,有两种操作: 1.将一个数从数列中删除,代价为\(x\). 2.将一个数加1,代价为\(y\). 询问最少花费多少的代价能够使数列中所有数的\(Gcd\)不为1. \((1 \leq n \leq 5 \cdot 10^5 , 1 \leq x,y \leq 1

【Codeforces Round #476 (Div. 2) [Thanks, Telegram!] E】Short Code

[链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 先建立一棵字典树. 显然,某一些节点上会被打上标记. 问题就转化成求所有标记的深度的和的最小值了. (标记可以上移,但是不能在同一位置 则我们用树形动规的方法. 从底往上递归处理. 考虑以x为根的一棵子树. 如果这个节点被打上了标记. 那么就直接将答案累加上这个节点的深度. 如果没有打上标记. 那么就把这个子树下面某个深度最高的点移动到这个位置上来. 显然这样贪心做是最优的. 用multiset维护某个子树下面的深度最大值. 然

Codeforces 741B Arpa&#39;s weak amphitheater and Mehrdad&#39;s valuable Hoses

[题目链接] http://codeforces.com/problemset/problem/741/B [题目大意] 给出一张图,所有连通块构成分组,每个点有价值和代价, 要么选择整个连通块,要么只能在连通块中选择一个,或者不选,为最大价值 [题解] 首先我们用并查集求出连通块,然后对连通块进行分组背包即可. [代码] #include <cstdio> #include <vector> #include <algorithm> #include <cstr

【codeforces 718E】E. Matvey&#39;s Birthday

题目大意&链接: http://codeforces.com/problemset/problem/718/E 给一个长为n(n<=100 000)的只包含‘a’~‘h’8个字符的字符串s.两个位置i,j(i!=j)存在一条边,当且仅当|i-j|==1或s[i]==s[j].求这个无向图的直径,以及直径数量. 题解:  命题1:任意位置之间距离不会大于15. 证明:对于任意两个位置i,j之间,其所经过每种字符不会超过2个(因为相同字符会连边),所以i,j经过节点至多为16,也就意味着边数至多

【codeforces 415D】Mashmokh and ACM(普通dp)

[codeforces 415D]Mashmokh and ACM 题意:美丽数列定义:对于数列中的每一个i都满足:arr[i+1]%arr[i]==0 输入n,k(1<=n,k<=2000),问满足[数列长度是k && 数列中每一个元素arr[i]在1~n之间 && 数列中元素可以重复]的数列有多少个?结果对10^9+7取余 解题思路:dp[i][j]表示长度是j,最后一位是i的种数 if(kk%i==0) dp[kk][j+1]+=dp[i][j] 1 #i

【Codeforces 368A】Brain&#39;s Photos 水题

黑白灰都是#Black&White #include <cstdio> int n,m; int main() { scanf("%d%d",&n,&m); int ok=0; for(int i=0;i<n;i++) for(int j=0;j<m;j++) { char s[5]; scanf("%s",s); if(s[0]!='W'&&s[0]!='B'&&s[0]!='G')

codeforces 742D Arpa&#39;s weak amphitheater and Mehrdad&#39;s valuable Hoses ——(01背包变形)

题意:给你若干个集合,每个集合内的物品要么选任意一个,要么所有都选,求最后在背包能容纳的范围下最大的价值. 分析:对于每个并查集,从上到下滚动维护即可,其实就是一个01背包= =. 代码如下: 1 #include <stdio.h> 2 #include <algorithm> 3 #include <string.h> 4 #include <vector> 5 using namespace std; 6 const int N = 1000 + 5;

【Codeforces 1114C】Trailing Loves (or L&#39;oeufs?)

[链接] 我是链接,点我呀:) [题意] 问你n!的b进制下末尾的0的个数 [题解] 证明:https://blog.csdn.net/qq_40679299/article/details/81167283 这题的话m比较大, 做个质因数分解就ok>_< 算n!有多少个x因子的话 以5为例子 (n=25) 25 20 15 10 5 把他们都除5 5 4 3 2 1 然后再除5 1 所以总共有6个 转换成代码就是 while(n>0){ ans+=n/5; n = n/5; } [代码

【Codeforces 332C】Students&#39; Revenge

Codeforces 332 C 我爱对拍,对拍使我快乐... 题意:有\(n\)个议题,学生们会让议会同意\(p\)个,其中主席会执行\(k\)个, 每一个议题执行后主席会掉\(a_i\)的头发,不执行后议会会增加\(b_i\)的不开心值, 然后主席想让议会的不开心值最小,如果有多重方案就选自己头发掉的最少的: 而学生们想让主席的头发掉的最多,如果有多种方案让议会的不开心值最大. 问让议会同意哪\(p\)个会达到最好的效果. 思路1: 这是我的不对的思路. (虽然没提交 我们首先将所有的数按照