SQL调优如何生成海量测试数据

场景,如果出现慢SQL,需要DBA加索引优化,怎么知道加的索引是有效的呢?这需要一遍遍的试验和调整,总不能直接拿线上的数据库测试吧,一般方法是在测试环境建立测试表,然后从线上的从库拷贝一些数据进测试环境,接着再进行加索引和explain

但有时候,导出的数据量少,执行计划看不出效果,导出数据量多,又会冲刷线上机器的buffer pool和影响IO,如果有个工具能够直接生成数据就好了,生成跟线上一样的100万,或者1000万就好了

以前sysbench压力测试,有一个生成数据的功能,生成100万数据是这样的

sysbench --test=oltp --mysql-table-engine=myisam --oltp-table-size=1000000 --mysql-socket=/tmp/mysql.sock --mysql-user=test --mysql-host=localhost --mysql-password=test prepare

但它生成表结构是固定的,进行压力测试的SQL语句也是固定的,无法调试线上的SQL语句

CREATE TABLE `sbtest` (
 `id` int(10) unsigned NOT NULL auto_increment,
 `k` int(10) unsigned NOT NULL default ‘0‘,
 `c` char(120) NOT NULL default ‘‘,
 `pad` char(60) NOT NULL default ‘‘,
 PRIMARY KEY (`id`),
 KEY `k` (`k`));

能否有一个创建用户自定义的表结构,并且对这个表结构生成上百千万数据的工具呢?有一个叫datagen的工具,链接在文章末尾

drwxr-xr-x. 2 root mysql     4096 Sep 27  2016 bizsql
drwxr-xr-x. 2 root mysql     4096 May 31 20:51 conf
-rw-r--r--. 1 root mysql 23698092 Sep 27  2016 datagen.jar
-rwxr-xr-x. 1 root mysql      147 Sep 27  2016 datagen.sh
-rw-rw-r--. 1 root mysql    31599 May 31 20:54 envbuilder.log
-rw-r--r--. 1 root mysql     1741 May 31 20:53 example.schema
-rw-r--r--. 1 root mysql     1336 May 31 09:42 example.schema_backup
-rw-r--r--. 1 root mysql     2062 Sep 27  2016 readme

方法很简单的2步,把你想要的表结构和想要生成多少条数据,写入到example.schema文件,比如这样,如果想要生成100万条数据,在表末尾加入注释/*{RC{1000000}}*/

CREATE TABLE `test`.`tbl_test` (
`post_id` BIGINT(20) DEFAULT ‘0‘  ,
`star` INTEGER(10) DEFAULT ‘0‘  ,
`view_count` INTEGER(11) DEFAULT ‘0‘  ,
`bean` INTEGER(11) DEFAULT ‘0‘  ,
`nearby` INTEGER(11) DEFAULT ‘0‘  ,
PRIMARY KEY (post_id) ,
INDEX (poster_uid)
) COLLATE=‘utf8mb4_general_ci‘ ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 /*{RC{1000000}}*/;

第2步,填写连接测试数据库的账号密码,只需要加入一行

<property name="obURL" value="jdbc:mysql://数据IP:数据库端口/数据库名字?user=用户名&amp;password=密码"/>
vi conf/datagen.xml 
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
        xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
        xsi:schemaLocation="http://www.springframework.org/schema/beans
        classpath:org/springframework/beans/factory/xml/spring-beans-2.5.xsd">    
        <bean id="datagen" class="com.alipay.obmeter.tools.DataGen">
           <property name="obURL" value="jdbc:mysql://数据IP:数据库端口/数据库名字?user=用户名&amp;password=密码"/>
                 
           <property name="inputDDL" value="example.schema"/>
           <property name="rowCountPerTable" value="1000000"/>
           <property name="maxThreadCountPerTable" value="20"/>
           <property name="maxThreadCount" value="20"/>
           <property name="dropTableFirst" value="true"/>
           <property name="needFreeze" value="false"/>
           <property name="staticRatio" value="1.0"/>
        </bean>
</beans>

接着运行shell脚本,往测试库建表,插入数据

[[email protected] datagen]# /bin/bash datagen.sh

[2017-05-31 08:53:15][WARN ] [DataGen :184] - Parsing ddl...
[2017-05-31 08:53:15][WARN ] [DataGen :187] - Creating table...
[2017-05-31 08:53:15][WARN ] [MultiThreadPrepareDataComparator:508] - Preparing generators...
[2017-05-31 08:53:15][WARN ] [MultiThreadPrepareDataComparator:510] - Generating dynamic data...
[2017-05-31 08:54:34][WARN ] [MultiThreadPrepareDataComparator:526] - Generate done.

在测试库,就会出现100万条数据了

mysql> select count(*) from test.tbl_test;
+----------+
| count(*) |
+----------+
|  1000000 |
+----------+
1 row in set (0.16 sec)

现在就可以加索引,explain线上真实的SQL语句了

mysql> explain select post_id  from test.tbl_test where post_type <> 1 and check_status = 9 and flag = 1 and post_time < 1496178301 order by post_time asc limit 200; \G
+----+-------------+----------+-------+---------------+-----------+---------+------+--------+-------------+
| id | select_type | table    | type  | possible_keys | key       | key_len | ref  | rows   | Extra       |
+----+-------------+----------+-------+---------------+-----------+---------+------+--------+-------------+
|  1 | SIMPLE      | tbl_test | range | post_time     | post_time | 9       | NULL | 501491 | Using where |
+----+-------------+----------+-------+---------------+-----------+---------+------+--------+-------------+
1 row in set (0.00 sec)
ERROR: 
No query specified

加索引

mysql>  alter table test.tbl_test add index idx_f(check_status,flag,post_type,post_time);           
Query OK, 0 rows affected (4.45 sec)
Records: 0  Duplicates: 0  Warnings: 0

再来一次explain,扫描50万行变2行

mysql> explain select post_id  from test.tbl_test where post_type <> 1 and check_status = 9 and flag = 1 and post_time < 1496178301 order by post_time asc limit 200; \G
+----+-------------+----------+-------+-----------------+-------+---------+------+------+------------------------------------------+
| id | select_type | table    | type  | possible_keys   | key   | key_len | ref  | rows | Extra                                    |
+----+-------------+----------+-------+-----------------+-------+---------+------+------+------------------------------------------+
|  1 | SIMPLE      | tbl_test | range | post_time,idx_f | idx_f | 15      | NULL |    2 | Using where; Using index; Using filesort |
+----+-------------+----------+-------+-----------------+-------+---------+------+------+------------------------------------------+
1 row in set (0.00 sec)

等调试好索引以后,确定能优化SQL以后,再往线上环境去加索引

当然还有一些很强大的功能

比如某个字段,只出现规定的几个值,比如状态status字段0,1,2,以及每个状态出现的概率

比如模拟线上的用户UID,可以限制某个字段随机数的范围,从00000001到899999999之间等

具体可以查看readme的介绍

百度链接: https://pan.baidu.com/s/1pKGQLkB 密码: 6t4u

时间: 2024-10-26 05:44:03

SQL调优如何生成海量测试数据的相关文章

SQL调优

# 问题的提出 在应用系统开发初期,由于开发数据库数据比较少,对于查询SQL语句,复杂视图的的编写等体会不出SQL语句各种写法的性能优劣,但是如果将应用 系统提交实际应用后,随着数据库中数据的增加,系统的响应速度就成为目前系统需要解决的最主要的问题之一.系统优化中一个很重要的方面就是SQL语句的优 化.对于海量数据,劣质SQL语句和优质SQL语句之间的速度差别可以达到上百倍,可见对于一个系统不是简单地能实现其功能就可,而是要写出高质量的 SQL语句,提高系统的可用性. 在多数情况下,Oracle

Oracle SQL 调优健康检查脚本

Oracle SQL 调优健康检查脚本 我们关注数据库系统的性能,进行数据库调优的主要工作就是进行SQL的优化.良好的数据架构设计.配合应用系统中间件和写一手漂亮的SQL,是未来系统上线后不出现致命性能问题的有力保证. 在CBO时代,一个SQL的执行计划是多样的.影响执行计划的因素也从过去RBO时代的SQL书写规则变为综合性因素.这为我们生成更加优秀执行计划提供了基础,同时也给我们进行调优带来的很多麻烦. 目前我们通常的做法,是通过AWR报告或者调试手段,发现某某SQL有问题,之后从Librar

11g新特性-自动sql调优(Automatic SQL Tuning)

11g新特性-自动sql调优(Automatic SQL Tuning) 在Oracle 10g中,引进了自动sql调优特性.此外,ADDM也会监控捕获高负载的sql语句. 在Oracle 11g中,通过运行sql tuning advisor加强了自动sql调优功能.默认情况下是每天夜间通过自动任务的方式运行"自动sql调优". 自动sql调优的过程: 1.识别需要调优的sql语句  根据AWR中的CPU和I/O负载来识别 2.调优,生成新的sql profile 在维护窗口(mai

SQL调优常用方法

在使用DBMS时经常对系统的性能有非常高的要求:不能占用过多的系统内存和 CPU资源.要尽可能快的完成的数据库操作.要有尽可能高的系统吞吐量.如果系统开发出来不能满足要求的所有性能指标,则必须对系统进行调整,这个工作被称为调优.绝定DBMS的性能的因素有两个因素:硬件和软件.使用频率高的CPU.使用多处理器.加大内存容量.增加Cache.提高网络速度等这些都是非常有效的硬件调优方式,不过对硬件进行调优对系统性能的提高是有限的,如果有非常好的硬件条件但是如果编写的SQL质量非常差的话系统的性能并不

数据库学习——SQL调优

一.SQL调优与查询优化器 数据库性能调优一般从发现.分析和解决SQL语句执行中的问题着手,这个过程统称为SQL调优(SQL tuning). 1.了解查询优化器 例如,有些查询优化器对于连接操作,一般按连接对象在FROM子句中出现的先后次序进行连接.SQL程序设计者可以利用此特点将选择性高的小表放在前面,大表放在后面,以尽快淘汰无用的中间结果,从而节省查询处理开销.又如,有些查询优化器中,凡是查询条件用OR连接的,就一概不用索引,因而只能用全表扫描,可以考虑使用UNION ALL代替OR. 2

oracle sql调优集

************************************************************ 1.新建调优集对象 ************************************************************ ---授权 grant ADMINISTER ANY SQL TUNING SET to scott; ---删除存在的STS BEGIN DBMS_SQLTUNE.DROP_SQLSET( sqlset_name => 'OCPYAN

初次使用SQL调优建议工具--SQL Tuning Advisor

在10g中,Oracle推出了自己的SQL优化辅助工具: SQL优化器(SQL Tuning Advisor :STA),它是新的DBMS_SQLTUNE包. 使用STA一定要保证优化器是CBO模式下.可是我觉得使用这样的工具,仅适合全然不懂SQL的调优的人群,不要觉得工具能解决好问题. SQL说究竟是表达的是一个业务,工具怎么可能理解业务.SQL调优还是要用autotrace,10046,10053,display_cursor这些优秀的工具做诊断.然后依据业务和所具备的oracle基础的知识

MySQL索引和SQL调优

MySQL索引 MySQL支持诸多存储引擎,而各种存储引擎对索引的支持也各不相同,因此MySQL数据库支持多种索引类型,如BTree索引,哈希索引,全文索引等等.为了避免混乱,本文将只关注于BTree索引,因为这是平常使用MySQL时主要打交道的索引. MySQL官方对索引的定义为:索引(Index)是帮助MySQL高效获取数据的数据结构.提取句子主干,就可以得到索引的本质:索引是数据结构. MySQL索引原理 索引目的 索引的目的在于提高查询效率,可以类比字典,如果要查“mysql”这个单词,

SQL调优日志--内存问题

SQL调优日志--内存问题排查入门篇 概述 很多系统的性能问题,是由内存导致的.内存不够会导致页面频繁换入换出,IO队列高,进而影响数据库整体性能. 排查 内存对数据库性能非常重要.那么我当出现问题的时候,我们怎么排查性能问题呢? 存在问题 主要查看2个部分.页生命周期 Page Life Expectancy,和  lazy writer /sec. 页生命周期 的参考值在很久很久以前,很多同学可能看到过,建议值是300s.但是这是基于32位操作系统,最大只能使用4GB内存给出的. Jonat