机器学习实战__KNN1

KNN的算法工作原理:

  存在一个训练样本集合,样本集中每个数据都有确定的标签(分类),即我们知道样本集中每一数据与所属分类的对应关系。输人没有标签的新数据后,将新数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样本集中特征最相似数据(最近邻)的分类标签。一般来说,我们只选择样本数据集中前K个最相似的数据,这就是K-近邻算法中K的出处,通常K是不大于20的整数。最后,选择K个最相似数据中出现次数最多的标签,作为新数据的分类。

一个KNN实战入门例子:

  

from numpy import *
import operator

def createDataSet():
    group = array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]])
    labels = [‘A‘,‘A‘,‘B‘,‘B‘]
    return group, labels

def classify0(inX, dataSet, labels, k):
    dataSetSize = dataSet.shape[0]
    diffMat = tile(inX, (dataSetSize,1)) - dataSet
    sqDiffMat = diffMat**2
    sqDistances = sqDiffMat.sum(axis=1)
    distances = sqDistances**0.5
    sortedDistIndicies = distances.argsort()
    classCount={}
    for i in range(k):
        voteIlabel = labels[sortedDistIndicies[i]]
        classCount[voteIlabel] = classCount.get(voteIlabel,0)+1
        sortedClassCount = sorted(classCount.iteritems(),key = operator.itemgetter(1),reverse=True)
        return sortedClassCount[0][0]

KNN.py源码

以上代码的流程说明:

  用一个简单的训练集,得到简单的一个模型,如图:

  

1 import KNN
2
3 group,labels = KNN.createDataSet()
4 var = KNN.classify0([1,0],group,labels,3)
5
6 print(var)

main.py

以上main.py调用KNN.py(即import KNN.py模块),进行测试输入点,通过这个简单的模型得到一个预测,输出标签(类别)

结果:

时间: 2024-10-27 19:12:48

机器学习实战__KNN1的相关文章

【机器学习实战】Machine Learning in Action 代码 视频 项目案例

MachineLearning 欢迎任何人参与和完善:一个人可以走的很快,但是一群人却可以走的更远 Machine Learning in Action (机器学习实战) | ApacheCN(apache中文网) 视频每周更新:如果你觉得有价值,请帮忙点 Star[后续组织学习活动:sklearn + tensorflow] ApacheCN - 学习机器学习群[629470233] 第一部分 分类 1.) 机器学习基础 2.) k-近邻算法 3.) 决策树 4.) 基于概率论的分类方法:朴素

《机器学习实战》之K-均值聚类算法的python实现

<机器学习实战>之K-均值聚类算法的python实现 最近的项目是关于"基于数据挖掘的电路故障分析",项目基本上都是师兄们在做,我只是在研究关于项目中用到的如下几种算法:二分均值聚类.最近邻分类.基于规则的分类器以及支持向量机.基于项目的保密性(其实也没有什么保密的,但是怕以后老板看到我写的这篇博文,所以,你懂的),这里就不介绍"基于数据挖掘的电路故障分析"的思路了. 废话不多说了,开始正题哈. 基本K-均值聚类算法 基本K均值算法的基本思路为:首先选择

机器学习实战笔记(Python实现)-03-朴素贝叶斯

--------------------------------------------------------------------------------------- 本系列文章为<机器学习实战>学习笔记,内容整理自书本,网络以及自己的理解,如有错误欢迎指正. 源码在Python3.5上测试均通过,代码及数据 --> https://github.com/Wellat/MLaction -----------------------------------------------

机器学习实战------利用logistics回归预测病马死亡率

大家好久不见,实战部分一直托更,很不好意思.本文实验数据与代码来自机器学习实战这本书,倾删. 一:前期代码准备 1.1数据预处理 还是一样,设置两个数组,前两个作为特征值,后一个作为标签.当然这是简单的处理,实际开发中特征值都是让我们自己选的,所以有时候对业务逻辑的理解还是很重要的. 1.2 sigmoid函数设置 1.3固定步长梯度上升算法 这段代码见一面1.4节. Alpha表示步长,maxcycles表示最大的迭代次数,其中weights=ones((n,1))是初始化一个全部为一的n*1

《机器学习实战》之二分K-均值聚类算法的python实现

<机器学习实战>之二分K-均值聚类算法的python实现 上面博文介绍了K-均值聚类算法及其用python实现,上篇博文中的两张截图,我们可以看到,由于K-均值聚类算法中由于初始质心的选取,会造成聚类的局部最优,并不是全局最优,因此,会造成聚类的效果并不理想,为克服K-均值算法收敛于局部最小值的问题,就有了二分K-均值算法. 二分K-均值聚类算法 二分K均值算法是基本K均值算法的直接扩充,其基本思想是:为了得到K个簇,首先将所有点的集合分裂成两个簇,然后从这些簇中选取一个继续分裂,迭代直到产生

机器学习实战笔记6(SVM)

鉴于July大哥的SVM三层境界(http://blog.csdn.net/v_july_v/article/details/7624837)已经写得非常好了,这里我就不详细描述,只是阐述简单的几个概念.如果看SVM三层境界有困惑,我也愿意与大家交流,共同进步. 简单概念描述: (1)      支持向量机(SVM, support vectormachine)就是通过最大化支持向量到分类超平面之间的分类间隔.分类超平面就是我们想要得到的决策曲面:支持向量就是离分类超平面最近的点,而间隔即为支持

机器学习实战笔记2(k-近邻算法)

1:算法简单描述 给定训练数据样本和标签,对于某测试的一个样本数据,选择距离其最近的k个训练样本,这k个训练样本中所属类别最多的类即为该测试样本的预测标签.简称kNN.通常k是不大于20的整数,这里的距离一般是欧式距离. 2:python代码实现 创建一个kNN.py文件,将核心代码放在里面了. (1)   创建数据 #创造数据集 def createDataSet(): group = array([[1.0, 1.1], [1.0, 1.0], [0, 0], [0, 0.1]]) labe

Spark机器学习实战视频

深入浅出Spark机器学习实战(用户行为分析) 课程观看地址:http://www.xuetuwuyou.com/course/144 课程出自学途无忧网:http://www.xuetuwuyou.com 一.课程目标  熟练掌握SparkSQL的各种操作,深入了解Spark内部实现原理  深入了解SparkML机器学习各种算法模型的构建和运行  熟练Spark的API并能灵活运用  能掌握Spark在工作当中的运用 二.适合人群  适合给,有java,scala基础,想往大数据spark机器

决策树代码《机器学习实战》

22:45:17 2017-08-09 KNN算法简单有效,可以解决很多分类问题.但是无法给出数据的含义,就是一顿计算向量距离,然后分类. 决策树就可以解决这个问题,分类之后能够知道是问什么被划分到一个类.用图形画出来就效果更好了,这次没有学哪个画图的,下次. 这里只涉及信息熵的计算,最佳分类特征的提取,决策树的构建.剪枝没有学,这里没有. 1 # -*- oding: itf-8 -*- 2 3 ''' 4 function: <机器学习实战>决策树的代码,画图的部分没有写: 5 note: