Python标准库3.4.3-random

9.6. random — Generate pseudo-random numbers

Source code: Lib/random.py



This module implements pseudo-random number generators for various distributions.

此模块实现伪随机数生成和各种分布

For integers, there is uniform selection from a range. For sequences, there is uniform selection of a random element, a function to generate a random permutation of a list in-place, and a function for random sampling without replacement.

对于整数,这是一个范围内的唯一一个数;对于序列,这是随机选择的一个元素 ;一个函数,生成一个列表的恰当的随机排序,或者生成无替换的随机抽样。

On the real line, there are functions to compute uniform, normal (Gaussian), lognormal, negative exponential, gamma, and beta distributions. For generating distributions of angles, the von Mises distribution is available.

Almost all module functions depend on the basic function random(), which generates a random float uniformly in the semi-open range [0.0, 1.0). Python uses the Mersenne Twister as the core generator. It produces 53-bit precision floats and has a period of 2**19937-1. The underlying implementation in C is both fast and threadsafe. The Mersenne Twister is one of the most extensively tested random number generators in existence. However, being completely deterministic, it is not suitable for all purposes, and is completely unsuitable for cryptographic purposes.

实际上,是一些计算统一分布,正态(高斯)分布,对数正态分布,复指数分布,伽马分布,和贝塔分布。生成角度分布和冯·米塞斯分布时可用的。

几乎所有的模块函数都依赖于基础的  random() 函数,该函数在一个半开放的范围 [0.0, 1.0)内(包括0.0,不包括1.0),产生一个随机的,单一的浮点数,

The functions supplied by this module are actually bound methods of a hidden instance of the random.Random class. You can instantiate your own instances of Random to get generators that don’t share state.

Class Random can also be subclassed if you want to use a different basic generator of your own devising: in that case, override the random(), seed(), getstate(), and setstate() methods. Optionally, a new generator can supply a getrandbits() method — this allows randrange() to produce selections over an arbitrarily large range.

The random module also provides the SystemRandom class which uses the system function os.urandom() to generate random numbers from sources provided by the operating system.

Warning

The pseudo-random generators of this module should not be used for security purposes. Use os.urandom() or SystemRandom if you require a cryptographically secure pseudo-random number generator.

Bookkeeping functions:

random.seed(a=None, version=2)

Initialize the random number generator.

If a is omitted or None, the current system time is used. If randomness sources are provided by the operating system, they are used instead of the system time (see the os.urandom() function for details on availability).

If a is an int, it is used directly.

With version 2 (the default), a str, bytes, or bytearray object gets converted to an int and all of its bits are used. With version 1, the hash() of a is used instead.

Changed in version 3.2: Moved to the version 2 scheme which uses all of the bits in a string seed.

random.getstate()

Return an object capturing the current internal state of the generator. This object can be passed to setstate() to restore the state.

random.setstate(state)

state should have been obtained from a previous call to getstate(), and setstate() restores the internal state of the generator to what it was at the time getstate() was called.

random.getrandbits(k)

Returns a Python integer with k random bits. This method is supplied with the MersenneTwister generator and some other generators may also provide it as an optional part of the API. When available, getrandbits() enables randrange() to handle arbitrarily large ranges.

Functions for integers:

random.randrange(stop)
random.randrange(start, stop[, step])

Return a randomly selected element from range(start, stop, step). This is equivalent to choice(range(start, stop, step)), but doesn’t actually build a range object.

The positional argument pattern matches that of range(). Keyword arguments should not be used because the function may use them in unexpected ways.

Changed in version 3.2: randrange() is more sophisticated about producing equally distributed values. Formerly it used a style like int(random()*n) which could produce slightly uneven distributions.

random.randint(a, b)

Return a random integer N such that a <= N <= b. Alias for randrange(a, b+1).

Functions for sequences:

random.choice(seq)

Return a random element from the non-empty sequence seq. If seq is empty, raises IndexError.

random.shuffle(x[, random])

Shuffle the sequence x in place. The optional argument random is a 0-argument function returning a random float in [0.0, 1.0); by default, this is the function random().

Note that for even rather small len(x), the total number of permutations of x is larger than the period of most random number generators; this implies that most permutations of a long sequence can never be generated.

random.sample(population, k)

Return a k length list of unique elements chosen from the population sequence or set. Used for random sampling without replacement.

Returns a new list containing elements from the population while leaving the original population unchanged. The resulting list is in selection order so that all sub-slices will also be valid random samples. This allows raffle winners (the sample) to be partitioned into grand prize and second place winners (the subslices).

Members of the population need not be hashable or unique. If the population contains repeats, then each occurrence is a possible selection in the sample.

To choose a sample from a range of integers, use an range() object as an argument. This is especially fast and space efficient for sampling from a large population: sample(range(10000000), 60).

If the sample size is larger than the population size, a ValueError is raised.

The following functions generate specific real-valued distributions. Function parameters are named after the corresponding variables in the distribution’s equation, as used in common mathematical practice; most of these equations can be found in any statistics text.

random.random()

Return the next random floating point number in the range [0.0, 1.0).

random.uniform(a, b)

Return a random floating point number N such that a <= N <= b for a <= b and b <= N <= a for b < a.

The end-point value b may or may not be included in the range depending on floating-point rounding in the equation a + (b-a) * random().

random.triangular(low, high, mode)

Return a random floating point number N such that low <= N <= high and with the specified mode between those bounds. The low and high bounds default to zero and one. The mode argument defaults to the midpoint between the bounds, giving a symmetric distribution.

random.betavariate(alpha, beta)

Beta distribution. Conditions on the parameters are alpha > 0 and beta > 0. Returned values range between 0 and 1.

random.expovariate(lambd)

Exponential distribution. lambd is 1.0 divided by the desired mean. It should be nonzero. (The parameter would be called “lambda”, but that is a reserved word in Python.) Returned values range from 0 to positive infinity if lambd is positive, and from negative infinity to 0 if lambd is negative.

random.gammavariate(alpha, beta)

Gamma distribution. (Not the gamma function!) Conditions on the parameters are alpha > 0 and beta > 0.

The probability distribution function is:

          x ** (alpha - 1) * math.exp(-x / beta) pdf(x) =  --------------------------------------             math.gamma(alpha) * beta ** alpha 
random.gauss(mu, sigma)

Gaussian distribution. mu is the mean, and sigma is the standard deviation. This is slightly faster than the normalvariate() function defined below.

random.lognormvariate(mu, sigma)

Log normal distribution. If you take the natural logarithm of this distribution, you’ll get a normal distribution with mean mu and standard deviation sigma. mu can have any value, and sigma must be greater than zero.

random.normalvariate(mu, sigma)

Normal distribution. mu is the mean, and sigma is the standard deviation.

random.vonmisesvariate(mu, kappa)

mu is the mean angle, expressed in radians between 0 and 2*pi, and kappa is the concentration parameter, which must be greater than or equal to zero. If kappa is equal to zero, this distribution reduces to a uniform random angle over the range 0 to 2*pi.

random.paretovariate(alpha)

Pareto distribution. alpha is the shape parameter.

random.weibullvariate(alpha, beta)

Weibull distribution. alpha is the scale parameter and beta is the shape parameter.

Alternative Generator:

class random.SystemRandom([seed])

Class that uses the os.urandom() function for generating random numbers from sources provided by the operating system. Not available on all systems. Does not rely on software state, and sequences are not reproducible. Accordingly, the seed() method has no effect and is ignored. The getstate() and setstate() methods raise NotImplementedError if called.

See also

M. Matsumoto and T. Nishimura, “Mersenne Twister: A 623-dimensionally equidistributed uniform pseudorandom number generator”, ACM Transactions on Modeling and Computer Simulation Vol. 8, No. 1, January pp.3-30 1998.

Complementary-Multiply-with-Carry recipe for a compatible alternative random number generator with a long period and comparatively simple update operations.

9.6.1. Notes on Reproducibility

Sometimes it is useful to be able to reproduce the sequences given by a pseudo random number generator. By re-using a seed value, the same sequence should be reproducible from run to run as long as multiple threads are not running.

Most of the random module’s algorithms and seeding functions are subject to change across Python versions, but two aspects are guaranteed not to change:

  • If a new seeding method is added, then a backward compatible seeder will be offered.
  • The generator’s random() method will continue to produce the same sequence when the compatible seeder is given the same seed.

9.6.2. Examples and Recipes

Basic usage:

>>> random.random()                      # Random float x, 0.0 <= x < 1.0 0.37444887175646646  >>> random.uniform(1, 10)                # Random float x, 1.0 <= x < 10.0 1.1800146073117523  >>> random.randrange(10)                 # Integer from 0 to 9 7  >>> random.randrange(0, 101, 2)          # Even integer from 0 to 100 26  >>> random.choice(‘abcdefghij‘)          # Single random element ‘c‘  >>> items = [1, 2, 3, 4, 5, 6, 7] >>> random.shuffle(items) >>> items [7, 3, 2, 5, 6, 4, 1]  >>> random.sample([1, 2, 3, 4, 5],  3)   # Three samples without replacement [4, 1, 5] 

A common task is to make a random.choice() with weighted probabilities.

If the weights are small integer ratios, a simple technique is to build a sample population with repeats:

>>> weighted_choices = [(‘Red‘, 3), (‘Blue‘, 2), (‘Yellow‘, 1), (‘Green‘, 4)] >>> population = [val for val, cnt in weighted_choices for i in range(cnt)] >>> random.choice(population) ‘Green‘ 

A more general approach is to arrange the weights in a cumulative distribution with itertools.accumulate(), and then locate the random value with bisect.bisect():

>>> choices, weights = zip(*weighted_choices) >>> cumdist = list(itertools.accumulate(weights)) >>> x = random.random() * cumdist[-1] >>> choices[bisect.bisect(cumdist, x)] ‘Blue‘ 
时间: 2024-10-10 01:04:46

Python标准库3.4.3-random的相关文章

python标准库Beautiful Soup与MongoDb爬喜马拉雅电台的总结

Beautiful Soup标准库是一个可以从HTML/XML文件中提取数据的Python库,它能够通过你喜欢的转换器实现惯用的文档导航,查找,修改文档的方式,Beautiful Soup将会节省数小时的工作时间.pymongo标准库是MongoDb NoSql数据库与python语言之间的桥梁,通过pymongo将数据保存到MongoDb中.结合使用这两者来爬去喜马拉雅电台的数据... Beautiful Soup支持Python标准库中的HTML解析器,还支持一些第三方的解析器,其中一个是

Python标准库 (pickle包,cPickle包)

在之前对Python对象的介绍中 (面向对象的基本概念,面向对象的进一步拓展),我提到过Python"一切皆对象"的哲学,在Python中,无论是变量还是函数,都是一个对象.当Python运行时,对象存储在内存中,随时等待系统的调用.然而,内存里的数据会随着计算机关机和消失,如何将对象保存到文件,并储存在硬盘上呢? 计算机的内存中存储的是二进制的序列 (当然,在Linux眼中,是文本流).我们可以直接将某个对象所对应位置的数据抓取下来,转换成文本流 (这个过程叫做serialize),

【python标准库学习】thread,threading(二)多线程同步

继上一篇介绍了python的多线程和基本用法.也说到了python中多线程中的同步锁,这篇就来看看python中的多线程同步问题. 有时候很多个线程同时对一个资源进行修改,这个时候就容易发生错误,看看这个最简单的程序: import thread, time count = 0 def addCount(): global count for i in range(100000): count += 1 for i in range(10): thread.start_new_thread(ad

[学习笔记] Python标准库简明教程 [转]

1 操作系统接口 os 模块提供了一系列与系统交互的模块: >>> os.getcwd() # Return the current working directory '/home/minix/Documents/Note/Programming/python/lib1' >>> os.chdir('~/python') # Change current working directory Traceback (most recent call last): File

Python标准库——走马观花

Python标准库——走马观花 作者:Vamei 出处:http://www.cnblogs.com/vamei 欢迎转载,也请保留这段声明.谢谢! Python有一套很有用的标准库(standard library).标准库会随着Python解释器,一起安装在你的电脑中的.它是Python的一个组成部分.这些标准库是Python为你准备好的利器,可以让编程事半功倍. 我将根据我个人的使用经验中,挑选出标准库三个方面的包(package)介绍: Python增强 系统互动 网络 第一类:Pyth

Python标准库1 介绍 Introduction 尝试翻译

The "Python library" contains several different kinds of components. Python标准库 包含几个不同的组件. It contains data types that would normally be considered part of the "core" of a language, such as numbers and lists. For these types, the Python

Python标准库概览

Python标准库通常被称为"自带的电池",自然地提供了广泛的功能,涵盖了大概200个左右的包与模块.不断有高质量的包或模块被开发出来,极大的丰富了标准库.但有些模块放在标准库中很难去维护,比如"Berkeley DB"模块,其被清理出标准库进行单独维护.还有一些库,比如PyParsing(创建分析器)也是没有被加在标准库中. 1 字符串处理 1.1 String模块 常量:string.ascii_letters. string.hexdigits. string

Python标准库(机器汉化)

Python标准库 虽然"Python语言参考"描述了Python语言的确切语法和语义,但该库参考手册描述了使用Python分发的标准库.它还介绍了Python发行版中通常包含的一些可选组件. Python的标准库非常广泛,提供了下面列出的长表所示的各种设施.该库包含内置模块(用C语言编写),提供对Python程序员无法访问的系统功能(如文件I / O)的访问,以及使用Python编写的模块,为出现的许多问题提供标准化的解决方案日常编程.其中一些模块是明确设计的,通过将特定平台抽象为平

Python 标准库一览(Python进阶学习)

转自:http://blog.csdn.net/jurbo/article/details/52334345 写这个的起因是,还是因为在做Python challenge的时候,有的时候想解决问题,连应该用哪个类库都不知道,还要去百度(我不信就我一个人那么尴尬TvT) 好像自从学习了基础的Python 语法,看了几本Python经典的书,知道了一些常见的类库.在几本语法应用熟练的情况下,如果不做题,像是无法显著的提高自己的知识储备了(所以叫你去做python challenge啊,什么都不会~~

Python标准库、第三方库和外部工具汇总

导读:Python数据工具箱涵盖从数据源到数据可视化的完整流程中涉及到的常用库.函数和外部工具.其中既有Python内置函数和标准库,又有第三方库和工具. 这些库可用于文件读写.网络抓取和解析.数据连接.数清洗转换.数据计算和统计分析.图像和视频处理.音频处理.数据挖掘/机器学习/深度学习.数据可视化.交互学习和集成开发以及其他Python协同数据工作工具. 为了区分不同对象的来源和类型,本文将在描述中通过以下方法进行标识: Python内置函数:Python自带的内置函数.函数无需导入,直接使