VC++串口通信编程详解

总结来看串口通信原理,(也可以说大多数通信原理也是如此)。

通信首先要有个通信,可以简单的把通信看成一个小桶,发送方住水桶里装水,接收方从水桶中取水。如果你要和对方通信首先需要将桶盖打开,再将水装入到桶中,这时接收方才能够从桶中取到水。这里就存在着一定的问题,

1,如果桶盖还没有打开,发送方已经发送了。这时接收方再从桶中取水,肯定取的水不对,会不一部分缺失了。解决方式就是让桶盖打开再往其中加水。

2,但是桶盖何时打开,发送方何时发送,这个不好把握。解决方法:接收方接到数据时,要返回一个应答标志,告诉发送方我已经取到数据了,而且是取得到正确数据才应答,否则不理会,继续取数据。或者一直查询,直到与发送方发来的数据一致再停止取数据。

一般的,进行串口通信总有一个是主动方一个是被动方,而且二者传输数据时,会有一定的协商好的数据格式,二者发送接收都按照此数据格式进行。

在工业控制中,工控机(一般都基于Windows平台)经常需要与智能仪表通过串口进行通信。串口通信方便易行,应用广泛。

一般情况下,工控机和各智能仪表通过RS485总线进行通信。RS485的通信方式是半双工的,只能由作为主节点的工控PC机依次轮询网络上的各智能控制单元子节点。每次通信都是由PC机通过串口向智能控制单元发布命令,智能控制单元在接收到正确的命令后作出应答。

  在Win32下,可以使用两种编程方式实现串口通信,其一是使用ActiveX控件,这种方法程序简单,但欠灵活。其二是调用Windows的API函数,这种方法可以清楚地掌握串口通信的机制,并且自由灵活。本文我们只介绍API串口通信部分。

  串口的操作可以有两种操作方式:同步操作方式和重叠操作方式(又称为异步操作方式)。同步操作时,API函数会阻塞直到操作完成以后才能返回(在多线程方式中,虽然不会阻塞主线程,但是仍然会阻塞监听线程);而重叠操作方式,API函数会立即返回,操作在后台进行,避免线程的阻塞。

无论那种操作方式,一般都通过四个步骤来完成:

(1) 打开串口

(2) 配置串口

(3) 读写串口

(4) 关闭串口

1、打开串口

Win32系统把文件的概念进行了扩展。无论是文件、通信设备、命名管道、邮件槽、磁盘、还是控制台,都是用API函数CreateFile来打开或创建的。该函数的原型为:

C++代码

  1. HANDLE CreateFile( LPCTSTR lpFileName, DWORD dwDesiredAccess, DWORD dwShareMode, LPSECURITY_ATTRIBUTES lpSecurityAttributes, DWORD dwCreationDistribution, DWORD dwFlagsAndAttributes, HANDLE hTemplateFile);

lpFileName:将要打开的串口逻辑名,如“COM1”;

dwDesiredAccess:指定串口访问的类型,可以是读取、写入或二者并列;

dwShareMode:指定共享属性,由于串口不能共享,该参数必须置为0;

lpSecurityAttributes:引用安全性属性结构,缺省值为NULL;

dwCreationDistribution:创建标志,对串口操作该参数必须置为OPEN_EXISTING;

dwFlagsAndAttributes:属性描述,用于指定该串口是否进行异步操作,该值为FILE_FLAG_OVERLAPPED,表示使用异步的I/O;该值为0,表示同步I/O操作;

hTemplateFile:对串口而言该参数必须置为NULL。

同步I/O方式打开串口的示例代码:

C++代码

  1. HANDLE hCom; //全局变量,串口句柄
  2. hCom=CreateFile("COM1",//COM1口
  3. GENERIC_READ|GENERIC_WRITE, //允许读和写
  4. 0, //独占方式
  5. NULL,
  6. OPEN_EXISTING, //打开而不是创建
  7. 0, //同步方式
  8. NULL);
  9. if(hCom==(HANDLE)-1)
  10. {
  11. AfxMessageBox("打开COM失败!");
  12. return FALSE;
  13. }
  14. return TRUE;

重叠I/O打开串口的示例代码:

C++代码

  1. HANDLE hCom; //全局变量,串口句柄
  2. hCom =CreateFile("COM1", //COM1口
  3. GENERIC_READ|GENERIC_WRITE, //允许读和写
  4. 0, //独占方式
  5. NULL,
  6. OPEN_EXISTING, //打开而不是创建
  7. FILE_ATTRIBUTE_NORMAL|FILE_FLAG_OVERLAPPED, //重叠方式
  8. NULL);
  9. if(hCom ==INVALID_HANDLE_VALUE)
  10. {
  11. AfxMessageBox("打开COM失败!");
  12. return FALSE;
  13. }
  14. return TRUE;

2、配置串口

在打开通讯设备句柄后,常常需要对串口进行一些初始化配置工作。这需要通过一个DCB结构来进行。DCB结构包含了诸如波特率、数据位数、奇偶校验和停止位数等信息。在查询或配置串口的属性时,都要用DCB结构来作为缓冲区。

一般用CreateFile打开串口后,可以调用GetCommState函数来获取串口的初始配置。要修改串口的配置,应该先修改DCB结构,然后再调用SetCommState函数设置串口。

DCB结构包含了串口的各项参数设置,下面仅介绍几个该结构常用的变量:

typedef struct _DCB{ ………

DWORD BaudRate;//波特率,指定通信设备的传输速率。这个成员可以是实际波特率值或者下面的常量值之一:  CBR_110,CBR_300,CBR_600,CBR_1200,CBR_2400,CBR_4800,CBR_9600,CBR_19200, CBR_38400, CBR_56000, CBR_57600, CBR_115200, CBR_128000, CBR_256000, CBR_14400

DWORD fParity; // 指定奇偶校验使能。若此成员为1,允许奇偶校验检查 …

BYTE ByteSize; // 通信字节位数,4—8

BYTE Parity; //指定奇偶校验方法。此成员可以有下列值: EVENPARITY 偶校验 NOPARITY 无校验 MARKPARITY 标记校验 ODDPARITY 奇校验

BYTE StopBits; //指定停止位的位数。此成员可以有下列值: ONESTOPBIT 1位停止位 TWOSTOPBITS 2位停止位

ON 5STOPBITS   1.5位停止位

GetCommState函数可以获得COM口的设备控制块,从而获得相关参数:

BOOL GetCommState(

HANDLE hFile, //标识通讯端口的句柄

LPDCB lpDCB //指向一个设备控制块(DCB结构)的指针 );

SetCommState函数设置COM口的设备控制块:

BOOL SetCommState( HANDLE hFile, LPDCB lpDCB );

除了在BCD中的设置外,程序一般还需要设置I/O缓冲区的大小和超时。Windows用I/O缓冲区来暂存串口输入和输出的数据。如果通信的速率较高,则应该设置较大的缓冲区。调用SetupComm函数可以设置串行口的输入和输出缓冲区的大小。

BOOL SetupComm( HANDLE hFile, // 通信设备的句柄

DWORD dwInQueue, // 输入缓冲区的大小(字节数)

DWORD dwOutQueue // 输出缓冲区的大小(字节数) );

在用ReadFile和WriteFile读写串行口时,需要考虑超时问题。超时的作用是在指定的时间内没有读入或发送指定数量的字符,ReadFile或WriteFile的操作仍然会结束。

要查询当前的超时设置应调用GetCommTimeouts函数,该函数会填充一个COMMTIMEOUTS结构。调用SetCommTimeouts可以用某一个COMMTIMEOUTS结构的内容来设置超时。

读写串口的超时有两种:间隔超时和总超时。间隔超时是指在接收时两个字符之间的最大时延。总超时是指读写操作总共花费的最大时间。写操作只支持总超时,而读操作两种超时均支持。用COMMTIMEOUTS结构可以规定读写操作的超时。

COMMTIMEOUTS结构的定义为:

typedef struct _COMMTIMEOUTS {

DWORD ReadIntervalTimeout; //读间隔超时

DWORD ReadTotalTimeoutMultiplier; //读时间系数

DWORD ReadTotalTimeoutConstant; //读时间常量

DWORD WriteTotalTimeoutMultiplier; // 写时间系数

DWORD WriteTotalTimeoutConstant; //写时间常量

} COMMTIMEOUTS,*LPCOMMTIMEOUTS;

COMMTIMEOUTS结构的成员都以毫秒为单位。

总超时的计算公式是:总超时=时间系数×要求读/写的字符数+时间常量

例如,要读入10个字符,那么读操作的总超时的计算公式为:

读总超时=ReadTotalTimeoutMultiplier×10+ReadTotalTimeoutConstant

可以看出:间隔超时和总超时的设置是不相关的,这可以方便通信程序灵活地设置各种超时。

如果所有写超时参数均为0,那么就不使用写超时。如果ReadIntervalTimeout为0,那么就不使用读间隔超时。如果ReadTotalTimeoutMultiplier 和 ReadTotalTimeoutConstant 都为0,则不使用读总超时。如果读间隔超时被设置成MAXDWORD并且读时间系数和读时间常量都为0,那么在读一次输入缓冲区的内容后读操作就立即返回,而不管是否读入了要求的字符。

在用重叠方式读写串口时,虽然ReadFile和WriteFile在完成操作以前就可能返回,但超时仍然是起作用的。在这种情况下,超时规定的是操作的完成时间,而不是ReadFile和WriteFile的返回时间。

配置串口的示例代码:

SetupComm(hCom,1024,1024); //输入缓冲区和输出缓冲区的大小都是1024

COMMTIMEOUTS TimeOuts; //设定读超时

TimeOuts.ReadIntervalTimeout=1000;

TimeOuts.ReadTotalTimeoutMultiplier=500;

TimeOuts.ReadTotalTimeoutConstant=5000; //设定写超时

TimeOuts.WriteTotalTimeoutMultiplier=500;

TimeOuts.WriteTotalTimeoutConstant=2000;

SetCommTimeouts(hCom,&TimeOuts); //设置超时

DCB dcb;

GetCommState(hCom,&dcb);

dcb.BaudRate=9600; //波特率为9600

dcb.ByteSize=8; //每个字节有8位

dcb.Parity=NOPARITY; //无奇偶校验位

dcb.StopBits=TWOSTOPBITS; //两个停止位

SetCommState(hCom,&dcb);

PurgeComm(hCom,PURGE_TXCLEAR|PURGE_RXCLEAR);

在读写串口之前,还要用PurgeComm()函数清空缓冲区,该函数原型:

BOOL PurgeComm( HANDLE hFile, //串口句柄

DWORD dwFlags // 需要完成的操作 );

参数dwFlags指定要完成的操作,可以是下列值的组合:

PURGE_TXABORT 中断所有写操作并立即返回,即使写操作还没有完成。

PURGE_RXABORT 中断所有读操作并立即返回,即使读操作还没有完成。

PURGE_TXCLEAR 清除输出缓冲区

PURGE_RXCLEAR 清除输入缓冲区

  3、读写串口

我们使用ReadFile和WriteFile读写串口,下面是两个函数的声明:

BOOL ReadFile( HANDLE hFile, //串口的句柄

// 读入的数据存储的地址,

// 即读入的数据将存储在以该指针的值为首地址的一片内存区

LPVOID lpBuffer,

// 要读入的数据的字节数

DWORD nNumberOfBytesToRead,

// 指向一个DWORD数值,该数值返回读操作实际读入的字节数

LPDWORD lpNumberOfBytesRead,

// 重叠操作时,该参数指向一个OVERLAPPED结构,同步操作时,该参数为NULL。

LPOVERLAPPED lpOverlapped );

BOOL WriteFile( HANDLE hFile, //串口的句柄

// 写入的数据存储的地址,

// 即以该指针的值为首地址的

LPCVOID lpBuffer,

//要写入的数据的字节数

DWORD nNumberOfBytesToWrite,

// 指向指向一个DWORD数值,该数值返回实际写入的字节数

LPDWORD lpNumberOfBytesWritten,

// 重叠操作时,该参数指向一个OVERLAPPED结构,

// 同步操作时,该参数为NULL。

LPOVERLAPPED lpOverlapped );

在用ReadFile和WriteFile读写串口时,既可以同步执行,也可以重叠执行。在同步执行时,函数直到操作完成后才返回。这意味着同步执行时线程会被阻塞,从而导致效率下降。在重叠执行时,即使操作还未完成,这两个函数也会立即返回,费时的I/O操作在后台进行。

ReadFile和WriteFile函数是同步还是异步由CreateFile函数决定,如果在调用CreateFile创建句柄时指定了FILE_FLAG_OVERLAPPED标志,那么调用ReadFile和WriteFile对该句柄进行的操作就应该是重叠的;如果未指定重叠标志,则读写操作应该是同步的。ReadFile和WriteFile函数的同步或者异步应该和CreateFile函数相一致。

ReadFile函数只要在串口输入缓冲区中读入指定数量的字符,就算完成操作。而WriteFile函数不但要把指定数量的字符拷入到输出缓冲区,而且要等这些字符从串行口送出去后才算完成操作。

如果操作成功,这两个函数都返回TRUE。需要注意的是,当ReadFile和WriteFile返回FALSE时,不一定就是操作失败,线程应该调用GetLastError函数分析返回的结果。例如,在重叠操作时如果操作还未完成函数就返回,那么函数就返回FALSE,而且GetLastError函数返回ERROR_IO_PENDING。这说明重叠操作还未完成。

同步方式读写串口比较简单,下面先例举同步方式读写串口的代码:

//同步读串口

char str[100];

DWORD wCount;//读取的字节数

BOOL bReadStat;

bReadStat=ReadFile(hCom,str,100,&wCount,NULL);

if(!bReadStat) { AfxMessageBox("读串口失败!"); return FALSE; } return TRUE; //同步写串口

char lpOutBuffer[100];

DWORD dwBytesWrite=100;

COMSTAT ComStat;

DWORD dwErrorFlags;

BOOL bWriteStat;

ClearCommError(hCom,&dwErrorFlags,&ComStat);

bWriteStat=WriteFile(hCom,lpOutBuffer,dwBytesWrite,& dwBytesWrite,NULL);

if(!bWriteStat) { AfxMessageBox("写串口失败!"); }

PurgeComm(hCom, PURGE_TXABORT| PURGE_RXABORT|PURGE_TXCLEAR|PURGE_RXCLEAR);

在重叠操作时,操作还未完成函数就返回。

重叠I/O非常灵活,它也可以实现阻塞(例如我们可以设置一定要读取到一个数据才能进行到下一步操作)。有两种方法可以等待操作完成:一种方法是用象WaitForSingleObject这样的等待函数来等待OVERLAPPED结构的hEvent成员;另一种方法是调用GetOverlappedResult函数等待,后面将演示说明。

下面我们先简单说一下OVERLAPPED结构和GetOverlappedResult函数:

OVERLAPPED结构

OVERLAPPED结构包含了重叠I/O的一些信息,定义如下:

typedef struct _OVERLAPPED { // o

DWORD Internal;

DWORD InternalHigh;

DWORD Offset;

DWORD OffsetHigh;

HANDLE hEvent;

} OVERLAPPED;

在使用ReadFile和WriteFile重叠操作时,线程需要创建OVERLAPPED结构以供这两个函数使用。线程通过OVERLAPPED结构获得当前的操作状态,该结构最重要的成员是hEvent。hEvent是读写事件。当串口使用异步通讯时,函数返回时操作可能还没有完成,程序可以通过检查该事件得知是否读写完毕。

当调用ReadFile, WriteFile 函数的时候,该成员会自动被置为无信号状态;当重叠操作完成后,该成员变量会自动被置为有信号状态。

GetOverlappedResult函数 BOOL GetOverlappedResult( HANDLE hFile, // 串口的句柄 // 指向重叠操作开始时指定的OVERLAPPED结构 LPOVERLAPPED lpOverlapped, // 指向一个32位变量,该变量的值返回实际读写操作传输的字节数。 LPDWORD lpNumberOfBytesTransferred, // 该参数用于指定函数是否一直等到重叠操作结束。 // 如果该参数为TRUE,函数直到操作结束才返回。 // 如果该参数为FALSE,函数直接返回,这时如果操作没有完成,
// 通过调用GetLastError()函数会返回ERROR_IO_INCOMPLETE。 BOOL bWait );

该函数返回重叠操作的结果,用来判断异步操作是否完成,它是通过判断OVERLAPPED结构中的hEvent是否被置位来实现的。

异步读串口的示例代码:

char lpInBuffer[1024];

DWORD dwBytesRead=1024;

COMSTAT ComStat;

DWORD dwErrorFlags;

OVERLAPPED m_osRead;

memset(&m_osRead,0,sizeof(OVERLAPPED));

m_osRead.hEvent=CreateEvent(NULL,TRUE,FALSE,NULL);

ClearCommError(hCom,&dwErrorFlags,&ComStat);

dwBytesRead=min(dwBytesRead,(DWORD)ComStat.cbInQue);

if(!dwBytesRead) return FALSE;

BOOL bReadStatus;

bReadStatus=ReadFile(hCom,lpInBuffer, dwBytesRead,&dwBytesRead,&m_osRead);

if(!bReadStatus)

//如果ReadFile函数返回FALSE

{

if(GetLastError()==ERROR_IO_PENDING)

//GetLastError()函数返回ERROR_IO_PENDING,表明串口正在进行读操作

{

WaitForSingleObject(m_osRead.hEvent,2000);

//使用WaitForSingleObject函数等待,直到读操作完成或延时已达到2秒钟

//当串口读操作进行完毕后,m_osRead的hEvent事件会变为有信号

PurgeComm(hCom, PURGE_TXABORT| PURGE_RXABORT|PURGE_TXCLEAR|PURGE_RXCLEAR);

return dwBytesRead;

}

return 0;

}

PurgeComm(hCom, PURGE_TXABORT| PURGE_RXABORT|PURGE_TXCLEAR|PURGE_RXCLEAR);

return dwBytesRead;

对以上代码再作简要说明:

在使用ReadFile 函数进行读操作前,应先使用ClearCommError函数清除错误。

ClearCommError函数的原型如下:

BOOL ClearCommError( HANDLE hFile, // 串口句柄

LPDWORD lpErrors, // 指向接收错误码的变量

LPCOMSTAT lpStat // 指向通讯状态缓冲区 );

该函数获得通信错误并报告串口的当前状态,同时,该函数清除串口的错误标志以便继续输入、输出操作。

参数lpStat指向一个COMSTAT结构,该结构返回串口状态信息。

COMSTAT结构 COMSTAT结构包含串口的信息,结构定义如下:

typedef struct _COMSTAT { // cst DWORD fCtsHold : 1; // Tx waiting for CTS signal DWORD fDsrHold : 1; // Tx waiting for DSR signal DWORD fRlsdHold : 1; // Tx waiting for RLSD signal DWORD fXoffHold : 1; // Tx waiting, XOFF char rec‘‘d DWORD fXoffSent : 1; //
Tx waiting, XOFF char sent DWORD fEof : 1; // EOF character sent DWORD fTxim : 1; // character waiting for Tx DWORD fReserved : 25; // reserved DWORD cbInQue; // bytes in input buffer DWORD cbOutQue; // bytes in output buffer } COMSTAT, *LPCOMSTAT;

本文只用到了cbInQue成员变量,该成员变量的值代表输入缓冲区的字节数。

最后用PurgeComm函数清空串口的输入输出缓冲区。

这段代码用WaitForSingleObject函数来等待OVERLAPPED结构的hEvent成员,下面我们再演示一段调用GetOverlappedResult函数等待的异步读串口示例代码:

char lpInBuffer[1024];

DWORD dwBytesRead=1024;

BOOL bReadStatus;

DWORD dwErrorFlags;

COMSTAT ComStat;

OVERLAPPED m_osRead;

ClearCommError(hCom,&dwErrorFlags,&ComStat);

if(!ComStat.cbInQue) return 0;

dwBytesRead=min(dwBytesRead,(DWORD)ComStat.cbInQue);

bReadStatus=ReadFile(hCom, lpInBuffer,dwBytesRead, &dwBytesRead,&m_osRead);

if(!bReadStatus) //如果ReadFile函数返回FALSE

{ if(GetLastError()==ERROR_IO_PENDING)

{ GetOverlappedResult(hCom, &m_osRead,&dwBytesRead,TRUE);

// GetOverlappedResult函数的最后一个参数设为TRUE,

//函数会一直等待,直到读操作完成或由于错误而返回。

return dwBytesRead; }

return 0; }

return dwBytesRead;

异步写串口的示例代码:

char buffer[1024];

DWORD dwBytesWritten=1024;

DWORD dwErrorFlags;

COMSTAT ComStat;

OVERLAPPED m_osWrite;

BOOL bWriteStat;

bWriteStat=WriteFile(hCom,buffer,dwBytesWritten, &dwBytesWritten,&m_OsWrite);

if(!bWriteStat)

{ if(GetLastError()==ERROR_IO_PENDING)

{ WaitForSingleObject(m_osWrite.hEvent,1000);

return dwBytesWritten; }

return 0; }

return dwBytesWritten;

4、关闭串口

利用API函数关闭串口非常简单,只需使用CreateFile函数返回的句柄作为参数调用CloseHandle即可:

BOOL CloseHandle(

HANDLE hObject; //handle to object to close

);

时间: 2024-10-22 15:42:30

VC++串口通信编程详解的相关文章

linux 串口通信 编程详解

计算机串口的引脚说明 序号 信号名称 符号 流向 功能 3 发送数据 TXD DTE→DCE DTE发送串行数据 2 接收数据 RXD DTE←DCE DTE 接收串行数据 7 请求发送 RTS DTE→DCE DTE 请求 DCE 将线路切换到发送方式 8 允许发送 CTS DTE←DCE DCE 告诉 DTE 线路已接通可以发送数据 6 数据设备准备好 DSR DTE←DCE DCE 准备好 5 信号地 SG   信号公共地 1 载波检测 DCD DTE←DCE 表示 DCE 接收到远程载波

创建C#串口通信程序详解

在.NET平台下创建C#串口通信程序,.NET 2.0提供了串口通信的功能,其命名空间是System.IO.Ports.这个新的框架不但可以访问计算机上的串口,还可以和串口设备进行通信.我们将使用标准的RS 232 C 在PC间通信.它工作在全双工模式下,而且我们不打算使用任何的握手或流控制器,而是使用无modem连接.创建C#串口通信程序的具体实现是如何的呢?让我们开始吧: 创建C#串口通信程序之命名空间 System.IO.Ports命名空间中最重用的是SerialPort 类. 创建C#串

linux系统socket通信编程详解函数

linux socket编程之TCP与UDP TCP与UDP区别 TCP---传输控制协议,提供的是面向连接.可靠的字节流服务.当客户和服务器彼此交换数据前,必须先在双方之间建立一个TCP连接,之后才能传输数据.TCP提供超时重发,丢弃重复数据,检验数据,流量控制等功能,保证数据能从一端传到另一端. UDP---用户数据报协议,是一个简单的面向数据报的运输层协议.UDP不提供可靠性,它只是把应用程序传给IP层的数据报发送出去,但是并不能保证它们能到达目的地.由于UDP在传输数据报前不用在客户和服

Linux串口编程详解

串口本身,标准和硬件 ? 串口是计算机上的串行通讯的物理接口.计算机历史上,串口曾经被广泛用于连接计算机和终端设备和各种外部设备.虽然以太网接口和USB接口也是以一个串行流进行数据传送的,但是串口连接通常特指那些与RS-232标准兼容的硬件或者调制解调器的接口.虽然现在在很多个人计算机上,原来用以连接外部设备的串口已经广泛的被USB和Firewire替代:而原来用以连接网络的串口则被以太网替代,还有用以连接终端的串口设备则已经被MDA或者VGA取而代之.但是,一方面因为串口本身造价便宜技术成熟,

Qt5串口编程详解【新版】

Qt5的串口比Qt4的好用得多,Qt4的貌似没有集成官方库. 之前我也写过Qt5的串口,不过有一些缺陷,这次试图改进.转载请保留链接:http://blog.csdn.net/qq363692146/article/details/26049355 本文发表于2014.5.17. 如果在linux下,记得使用root权限,可以用root权限打开可执行文件,或者用root权限打开Qt Creator.(原因是串口常常需要特权,有些串口有特权也只能度而不能写,这个可能是Qt本身的问题)[至于安卓端,

Java多线程编程详解

线程的同步 由于同一进程的多个线程共享同一片存储空间,在带来方便的同时,也带来了访问冲突这个严重的问题.Java语言提供了专门机制以解决这种冲突,有效避免了同一个数据对象被多个线程同时访问. 由于我们可以通过 private 关键字来保证数据对象只能被方法访问,所以我们只需针对方法提出一套机制,这套机制就是 synchronized 关键字,它包括两种用法:synchronized 方法和 synchronized 块. 1. synchronized 方法:通过在方法声明中加入 synch

Linux的SOCKET编程详解(转)

Linux的SOCKET编程详解 1. 网络中进程之间如何通信 进 程通信的概念最初来源于单机系统.由于每个进程都在自己的地址范围内运行,为保证两个相互通信的进 程之间既互不干扰又协调一致工作,操作系统为进程通信提供了相应设施,如 UNIX BSD有:管道(pipe).命名管道(named pipe)软中断信号(signal) UNIX system V有:消息(message).共享存储区(shared memory)和信号量(semaphore)等. 他们都仅限于用在本机进程之间通信.网间进

[顶]ORACLE PL/SQL编程详解之二:PL/SQL块结构和组成元素(为山九仞,岂一日之功)

原文:[顶]ORACLE PL/SQL编程详解之二:PL/SQL块结构和组成元素(为山九仞,岂一日之功) [顶]ORACLE PL/SQL编程详解之二: PL/SQL块结构和组成元素(为山九仞,岂一日之功) 继上四篇:ORACLE PL/SQL编程之八:把触发器说透                ORACLE PL/SQL编程之六:把过程与函数说透(穷追猛打,把根儿都拔起!)                [推荐]ORACLE PL/SQL编程之四:把游标说透(不怕做不到,只怕想不到) [推荐]

【强烈强烈推荐】《ORACLE PL/SQL编程详解》全原创(共八篇)--系列文章导航

原文:[强烈强烈推荐]<ORACLE PL/SQL编程详解>全原创(共八篇)--系列文章导航 <ORACLE PL/SQL编程详解> 系列文章目录导航 ——通过知识共享树立个人品牌. 本是成书的,但后来做其他事了,就无偿的贡献出来,被读者夸其目前为止最“实在.经典”的写ORACLE PL/SQL编程的文章-! 觉得对你有帮助,请留言与猛点推荐,谢谢. [推荐]ORACLE PL/SQL编程详解之一:PL/SQL 程序设计简介(千里之行,始于足下) 本篇主要内容如下:第一章 PL/S