图的邻接多重表 是 无向图的 另一种表示法。其与 邻接表 的差别 仅仅 在于 ,邻接表 用 两个 顶点 来表示 一条边,而 邻接多重表 用一个 顶点来表示一条边。这样使得 邻接多重表 在 某些操作 要 来的 方便。例如 将 搜索过的边 做记号 或者 删除 一条边。
下面是邻接多重表的结构:
下面的 6条边 用 6个弧 节点表示,用12个指针指向,每个弧节点被 指向2次。这样使得我们 在 释放内存的时候 需要格外小心。
下面上代码:
源码工程文件网盘地址:点击打开链接
// AMLGraph.cpp : 定义控制台应用程序的入口点。 //无向图的邻接多重表 #include "stdafx.h" #include <cstdlib> #define MAX_VEX_NUM 20 enum E_State { E_State_Error = 0, E_State_Ok = 1, }; enum E_VisitIf { unvisited = 0, visited = 1, }; struct ArcNode { E_VisitIf mark; int iIndex,jIndex;//顶点i,j在图中的位置 ArcNode * iNext;//与i顶点点相关的下一个弧 ArcNode * jNext;//与j顶点点相关的下一个弧 }; struct VNode { char vexName; ArcNode * head;//头指针 }; struct AMLGraph { VNode adjMuList[MAX_VEX_NUM];//顶点数组 int vexNum,arcNum; }; //获取弧 的 头节点 ArcNode * getHeadNode(){ ArcNode * pNode = (ArcNode *)malloc(sizeof(ArcNode)); if (pNode){ pNode->iIndex = pNode->jIndex = -1; pNode->iNext = pNode->jNext = NULL; pNode->mark = unvisited; } return pNode; } ArcNode * getArcNode(int iIndex,int jIndex){ ArcNode * pNode = getHeadNode(); if (pNode){ pNode->iIndex = iIndex; pNode->jIndex = jIndex; } return pNode; } int vexLocation(AMLGraph g,char vex){ for (int i = 0; i < g.vexNum; i++){ if (g.adjMuList[i].vexName == vex){ return i; } } return -1; } void createGrahp(AMLGraph * g){ printf("输入图的顶点数 和 边(弧)数\n"); scanf("%d%d%*c",&g->vexNum,&g->arcNum); //构造顶点集 printf("请输入顶点集\n"); for (int i = 0; i < g->vexNum; i++){ char name; scanf("%c",&name); g->adjMuList[i].vexName = name; g->adjMuList[i].head = getHeadNode();//建立 头节点,并让头指针指向头节点 } //构造顶点关系 fflush(stdin); printf("请输入顶点的关系\n"); for (int i = 0; i < g->arcNum; i++){ char vex1,vex2; scanf("%c%c%*c",&vex1,&vex2); int location1 = vexLocation(*g,vex1); int location2 = vexLocation(*g,vex2); ArcNode * pNode = getArcNode(location1,location2); pNode->iNext = g->adjMuList[location1].head->iNext; g->adjMuList[location1].head->iNext = pNode; pNode->jNext = g->adjMuList[location2].head->iNext; g->adjMuList[location2].head->iNext = pNode; } } void destoryGraph(AMLGraph * g){ for (int i = 0; i < g->vexNum; i++){ ArcNode * next = g->adjMuList[i].head->iNext; while (next != NULL){ ArcNode * freeNode = next; next = next->iIndex == i ? next->iNext : next->jNext; if (freeNode->iIndex == i){////只释放 iIndex 等于 i的节点,要不会多次释放 free(freeNode); } } free(g->adjMuList[i].head); g->adjMuList[i].head = NULL; g->adjMuList[i].vexName = ' '; g->vexNum = g->arcNum = 0; } } //顶点vex1 和顶点vex2 是否相邻 bool graphIsAdj(AMLGraph g,char vex1,char vex2){ int location = vexLocation(g,vex1); ArcNode * next = g.adjMuList[location].head->iNext; while (next != NULL){ if (g.adjMuList[next->iIndex].vexName == vex2 || g.adjMuList[next->jIndex].vexName == vex2){ return true; } next = next->iIndex == location ? next->iNext : next->jNext; } return false; } int graphDegree(AMLGraph g,char vex){ int degree = 0; int location = vexLocation(g,vex); ArcNode * next = g.adjMuList[location].head->iNext;//计算所有出度 while (next != NULL){ degree++; next = next->iIndex == location ? next->iNext : next->jNext; } return degree; } char firstAdj(AMLGraph g,char vex){ int location = vexLocation(g,vex); ArcNode * next = g.adjMuList[location].head->iNext; if (next != NULL) { int index = next->iIndex == location ? next->jIndex : next->iIndex; return g.adjMuList[index].vexName; } return ' '; } char nextAdj(AMLGraph g,char vex1,char vex2){ int location = vexLocation(g,vex1); ArcNode * next = g.adjMuList[location].head->iNext; while (next != NULL){//查找到 vex2 char iName = g.adjMuList[next->iIndex].vexName; char jName = g.adjMuList[next->jIndex].vexName; if (iName == vex2 || jName == vex2){ next = next->iIndex == location ? next->iNext : next->jNext; break; } } if (next != NULL){ int index = next->iIndex == location ? next->jIndex : next->iIndex; return g.adjMuList[index].vexName; } return ' '; } //插入边(弧) void insertArc(AMLGraph * g,char vex1,char vex2){ int location1 = vexLocation(*g,vex1); int location2 = vexLocation(*g,vex2); ArcNode * node = getArcNode(location1,location2); node->iNext = g->adjMuList[location1].head->iNext; g->adjMuList[location1].head->iNext = node; node->jNext = g->adjMuList[location2].head->iNext; g->adjMuList[location2].head->iNext = node; g->arcNum ++; } //删除边(弧) void deleteArc(AMLGraph * g,char vex1,char vex2){ g->arcNum--; int location1 = vexLocation(*g,vex1); int location2 = vexLocation(*g,vex2); ArcNode * next = g->adjMuList[location1].head->iNext; ArcNode * pre = g->adjMuList[location1].head; while (next != NULL){ if (next->iIndex == location2){ if (pre == g->adjMuList[location1].head || pre->iIndex == location1){//删除的是第一个节点.或者 前驱的index = location1 pre->iNext = next->jNext; } else{ pre->jNext = next->jNext; } break; } else if(next->jIndex == location2){ if (pre == g->adjMuList[location1].head || pre->iIndex == location1){//删除的是第一个节点.或者 前驱的index = location1 pre->iNext = next->iNext; } else{ pre->jNext = next->iNext; } break; } pre = next; next = next->iIndex == location1 ? next->iNext : next->jNext; } next = g->adjMuList[location2].head->iNext; pre = g->adjMuList[location2].head; while (next != NULL){ if (next->iIndex == location1){ if (pre == g->adjMuList[location2].head || pre->iIndex == location2){//删除的是第一个节点.或者 前驱的index = location1 pre->iNext = next->jNext; } else{ pre->jNext = next->jNext; } free(next); break; } else if(next->jIndex == location1){ if (pre == g->adjMuList[location2].head || pre->iIndex == location2){//删除的是第一个节点.或者 前驱的index = location1 pre->iNext = next->iNext; } else{ pre->jNext = next->iNext; } free(next); break; } pre = next; next = next->iIndex == location2 ? next->iNext : next->jNext; } } //插入顶点 void insertVex(AMLGraph * g, char vex){ if (g->vexNum < MAX_VEX_NUM){ g->adjMuList[g->vexNum].vexName = vex; g->adjMuList[g->vexNum].head = getHeadNode(); g->vexNum++; } } //删除顶点 void deleteVex(AMLGraph * g,char vex){ int location = vexLocation(*g,vex); //删除顶点 同样需要 遍历整个 图 查找 与 vex 相关的弧节点 for (int i = 0; i < g->vexNum; i++){ ArcNode * next = g->adjMuList[i].head->iNext; while (next != NULL){ if (next->iIndex == location || next->jIndex == location){ ArcNode * delNode = next; next = next->iIndex == location ? next->iNext : next->jNext; char delData1 = g->adjMuList[delNode->iIndex].vexName; char delData2 = g->adjMuList[delNode->jIndex].vexName; deleteArc(g,delData1,delData2); } else{ next = next->iIndex == location ? next->iNext : next->jNext; } } } //更改因删除顶点 而导致的元素位置变化.. for (int i = 0; i < g->vexNum; i++){ ArcNode * next = g->adjMuList[i].head->iNext; while (next != NULL){ if (next->iIndex == i){ if(next->iIndex > location){ next->iIndex --; } if(next->jIndex > location){ next->jIndex --; } } next = next->iIndex == location ? next->iNext : next->jNext; } } free(g->adjMuList[location].head);//释放头节点 //vex下面的 顶点上移 for (int i = location + 1; i < g->vexNum; i++){ g->adjMuList[i-1] = g->adjMuList[i]; } g->vexNum --; } void printGrahp(AMLGraph g){ for (int i = 0; i < g.vexNum; i++){ printf("%c的 邻接点有:",g.adjMuList[i].vexName); ArcNode * next = g.adjMuList[i].head->iNext;//删除所有弧尾 while (next != NULL){ int index = next->iIndex == i ? next->jIndex : next->iIndex; printf("%c",g.adjMuList[index].vexName); next = next->iIndex == i ? next->iNext : next->jNext; } printf("\n"); } } //邻接多重表 int _tmain(int argc, _TCHAR* argv[]) { AMLGraph g; createGrahp(&g); printGrahp(g); printf("图的顶点数:%d,边(弧)树为:%d\n",g.vexNum,g.arcNum); char * isAdj = graphIsAdj(g,'b','d')? "相邻" : "不相邻"; int degree = graphDegree(g,'d'); char first = firstAdj(g,'c'); char next = nextAdj(g,'d','c'); printf("c的第一个邻接点是%c,d的c邻接点的下一个邻接点是:%c\n",first,next); printf("b 和 d %s,d的度为:%d\n",isAdj,degree); insertVex(&g,'f'); printf("插入f顶点之后图结构如下:\n"); printGrahp(g); insertArc(&g,'e','f'); printf("插入(e,f) 之后图结构如下:\n"); printGrahp(g); deleteArc(&g,'d','c'); printf("删除(d,c)之后图结构如下:\n"); printGrahp(g); deleteVex(&g,'c'); printf("删除顶点c之后图结构如下:\n"); printGrahp(g); printf("图的顶点数:%d,边(弧)数为:%d\n",g.vexNum,g.arcNum); destoryGraph(&g); return 0; }
运行截图:
、
时间: 2024-12-13 08:16:35