数据结构实践——迷宫问题之图深度优先遍历解法

版权声明:本文为博主原创文章,未经博主允许不得转载。

时间: 2024-10-06 00:12:42

数据结构实践——迷宫问题之图深度优先遍历解法的相关文章

42. 蛤蟆的数据结构笔记之四十二图的遍历之广度优先

42. 蛤蟆的数据结构笔记之四十二图的遍历之广度优先 本篇名言:"生活真象这杯浓酒 ,不经三番五次的提炼呵 , 就不会这样一来可口 ! -- 郭小川" 继续看下广度优先的遍历,上篇我们看了深度遍历是每次一个节点的链表是走到底的. 欢迎转载,转载请标明出处:http://write.blog.csdn.net/postedit/47029275 1.  原理 首先,从图的某个顶点v0出发,访问了v0之后,依次访问与v0相邻的未被访问的顶点,然后分别从这些顶点出发,广度优先遍历,直至所有的

图 - 深度优先遍历

图的遍历和树的遍历类似,我们希望从图中某一顶点出发访遍图中其余顶点,且使每一个顶点仅被访问一次,这一过程就叫做图的遍历(Traverse Graph). 图的遍历方法一般有两种,第一种是深度优先遍历(Depth First Search),也有称为深度优先搜索,简称为DFS.第二种是<广度优先遍历(Breadth  First Search)>,也有称为广度优先搜索,简称为BFS.我们在<堆栈与深度优先搜索>中已经较为详细地讲述了深度优先搜索的策略,这里不再赘述.我们也可以把图当作

数据结构(15):图 深度优先遍历(DFS)

/*-----------------------------------------------*/ /* 邻接矩阵的DFS */ // 基于 数据结构(14) 中的邻接矩阵的结构 #include <iostream> using namespace std; typedef char VertexType; typedef int EdgeType; const int MAXVEX = 100; const int INFINITY = 65535; typedef struct {

【暖*墟】 #树与图# 深度优先遍历入门知识点

[一. 时间戳(dfn)] 什么是时间戳? 就是每个位置被访问到的次序. 比如说我们对一棵树进行深搜,在深搜中访问的相应次序就被我们称为时间戳. [二. 树的dfs序] 1.dfs序的作用 维护一系列树上的问题,解决一棵树上的所有后代结点信息的更改和祖先结点有关改变, 通过dfs来记录树的每个顶点的出入时间戳,来控制它子树上的所有结点的状态的更新. 用 L[ i ],R[ i ] 来记录这个祖先结点控制后代结点的区间. 即dfs序的特点就是:每个节点编号x在序列中恰好出现两次. 一棵子树的dfs

邻接表的深度优先遍历

转载请注明出处http://www.cnblogs.com/hslzju 对<大话数据结构>P241——邻接表的深度优先遍历,进行了自己的理解并完善了代码. 邻接矩阵的深度优先遍历见http://www.cnblogs.com/hslzju/p/5399249.html 举个简单的无序图例子,为了节省时间传手稿. 首先用邻接表的存储结构创建该图,再进行深度优先遍历.代码和解释如下(Qt Creator测试通过): 1 #include <iostream> 2 #include &

41 蛤蟆的数据结构笔记之四十一图的遍历之深度优先

41  蛤蟆的数据结构笔记之四十一图的遍历之深度优先 本篇名言:"对于我来说 , 生命的意义在于设身处地替人着想 , 忧他人之忧 , 乐他人之乐. -- 爱因斯坦" 上篇我们实现了图的邻接多重表表示图,以及深度遍历和广度遍历的代码,这次我们先来看下图的深度遍历. 欢迎转载,转载请标明出处: 1.  原理 图遍历又称图的遍历,属于数据结构中的内容.指的是从图中的任一顶点出发,对图中的所有顶点访问一次且只访问一次.图的遍历操作和树的遍历操作功能相似.图的遍历是图的一种基本操作,图的许多其它

数据结构:图的遍历--深度优先、广度优先

图的遍历:深度优先.广度优先 遍历 图的遍历是指从图中的某一顶点出发,按照一定的策略访问图中的每一个顶点.当然,每个顶点有且只能被访问一次. 在图的遍历中,深度优先和广度优先是最常使用的两种遍历方式.这两种遍历方式对无向图和有向图都是适用的,并且都是从指定的顶点开始遍历的.先看下两种遍历方式的遍历规则: 深度优先 深度优先遍历也叫深度优先搜索(Depth First Search).它的遍历规则:不断地沿着顶点的深度方向遍历.顶点的深度方向是指它的邻接点方向. 具体点,给定一图G=<V,E>,

数据结构?图的深度优先遍历

对于图这种数据结构,一般有两种遍历即深度优先(dfs),和广度优先(bfs),假设我们有如下这张图: 访问过程 现在假设计算0到其它点的路径,根据深度优先遍历: 1.获取0的所有邻边 1.2.5.6(默认此顺序) 2.再获取1的邻边(无),获取2的邻边(无),获取5的邻边(0,3,4) 3.0访问过,不再获取邻边:然后获取3的邻边(5,4) 4.5访问过,不再获取邻边:然后获取4的邻边(5,6) 5.5访问过,不再获取邻边:然后获取6的邻边(0,4) 6.0访问过,4被访问过,此时退到步骤2,即

数据结构(C实现)------- 图的深度优先遍历

[本文是自己学习所做笔记,欢迎转载,但请注明出处:http://blog.csdn.net/jesson20121020] 算法描述: 假设给定图G的初始状态是所有顶点均未曾访问过,在G中任选一顶点vi为初始的出发点,则深度优先遍历可定义如下: 首先访问出发点vi,并将其标记为已被访问过:然后,依次从vi出发遍历vi的每一个邻接点vj,若vj未曾访问过,则以vj为新的出发点继续进行深度优先遍历,直至图中所有和vi有路径相通的顶点都被访问到为止.因此,若G是连通图,则从初始出发点开始的遍历过程结束