一个基本的傅立叶变换例子

clear;clc;

tempresult=[];
figure
for i=1:6
    filename=['ROISignals_sub_00' num2str(i) '_2000.mat'];
    data=importdata(filename);
    x=data(:,1);
    fs=2;
%     L=length(x);
    L=256;
    y1=fft(x,L);
    y2=fftshift(y1);
    mag=abs(y2);
    f=(0:L-1)*fs/L-fs/2;
    tempresult=[tempresult mag];
    plot(f,tempresult)
end
title('6个受试频谱图')
figure()
resultMag=mean(tempresult,2);
plot(f,resultMag)
title('6个受试平均频谱图')

鉴于频谱分析的重要性,一个FFT变换的小例子储存下来,以备后用

时间: 2024-12-06 00:22:34

一个基本的傅立叶变换例子的相关文章

算法系列之二十三:离散傅立叶变换之音频播放与频谱显示

算法系列之二十三:离散傅立叶变换之音频播放与频谱显示 算法系列之二十三离散傅立叶变换之音频播放与频谱显示 导语 什么是频谱 1 频谱的原理 2 频谱的选择 3 频谱的计算 显示动态频谱 1 实现方法 2 杂项说明 结果展示 导语 频谱和均衡器,几乎是媒体播放程序的必备物件,没有这两个功能的媒体播放程序会被认为不够专业,现在主流的播放器都具备这两个功能,foobar 2000的十八段均衡器就曾经让很多人着迷.在上一篇对离散傅立叶变换介绍的基础上,本篇就进一步介绍一下频谱是怎么回事儿,下一篇继续介绍

GSL 学习笔记(快速傅立叶变换)

GSL 学习笔记(快速傅立叶变换) GNU Scientific Library (GSL)是一个开源的科学计算的函数库,里面实现了大量的数学函数,还提供了方程求解.傅立叶变换等多种功能. GSL 中FFT 的定义如下, 正变换(forward): 逆变换(inverse): 还有一个叫做反向变换: 反变换(backward): 复数FFT,长度为2^N 这是最简单的一种.C89标准中没有定义复数类型,不过gsl 倒是给了个gsl_complex 类型.我们可以使用这个类型,或者直接实部虚部交替

为什么要进行傅立叶变换?傅立叶变换究竟有何意义?如何用Matlab实现快速傅立叶变换

写在最前面:本文是我阅读了多篇相关文章后对它们进行分析重组整合而得,绝大部分内容非我所原创.在此向多位原创作者致敬!!! 一.傅立叶变换的由来 关于傅立叶变换,无论是书本还是在网上可以很容易找到关于傅立叶变换的描述,但是大都是些故弄玄虚的文章,太过抽象,尽是一些让人看了就望而生畏的公式的罗列,让人很难能够从感性上得到理解,最近,我偶尔从网上看到一个关于数字信号处理的电子书籍,是一个叫Steven W. Smith, Ph.D.外国人写的,写得非常浅显,里面有七章由浅入深地专门讲述关于离散信号的傅

一步一步的无障碍理解快速傅立叶变换

/////////////////////////////////////////////////////////////////////////////////////////////////////// 作者:tt2767 声明:本文遵循以下协议自由转载-非商用-非衍生-保持署名|Creative Commons BY-NC-ND 3.0 查看本文更新与讨论请点击:http://blog.csdn.net/tt2767 链接被删请百度: CSDN tt2767 ///////////////

算法系列之二十四:离散傅立叶变换之音频播放与均衡器

导语 在算法系列的第二十二篇,我们介绍了离散傅立叶变换算法的实现,将时域的音频信号转换到频域进行分析,获取拨号音频的频率特征.这一篇我们将介绍一种频域均衡器的实现方法,所谓的频域均衡器,就是在频域信号的基础上对音频数据进行调整,然后再将频域信号转换成时域信号在回放设备上播放,从而达到音色调节的目的.将频域信号转换成时域信号的算法,就是离散傅立叶逆变换算法. 1 离散傅立叶逆变换 有从时域转换到频域的方法,就必然有从频域转换到时域的方法,相对于离散傅里叶变换,这个反向转换就是离散傅里叶逆变换(ID

图像中的傅立叶变换(一)

关于傅立叶变换,知乎上已经有一篇很好的教程,因此,这篇文章不打算细讲傅立叶的物理含义,只是想从图像的角度谈一谈傅立叶变换的本质和作用. 本文假设读者已经熟知欧拉公式: \[ e^{j\pi x}=\cos{\pi x}+j\sin{\pi x} \] 并且知道高数课本中给出的傅立叶变换公式: \[ f(x) - \frac{a_0}{2}+\sum_{n=1}^{\infty}{[a_n \cos{nx}+b_n\sin{nx}]} \] 其中 \(a_n=\frac{1}{\pi}\int_{

离散傅立叶变换,快速傅立叶变换和傅里叶级数

目的:要学习通讯或者从事通讯行业都免不了要接触傅立叶变换,傅立叶变换有很多形式包括积分形式和离散形式的,公式也是各种积分或者累加,我在学习的初始是直接背下来这些公式,并没有想过每个公式里变量和积分以及累加的含义.因此现在有了写一篇关于傅立叶变换的博客的想法.本篇主要以最简单的cos(t)为例,以Matlab为媒介,比较Discrete Fourier Transform(DFT)和Fast Fourier Transform (FFT).这是因为DFT是我在学习信号处理时老师直接给的公式,而FF

MATLAB数字图像处理(一)基础操作和傅立叶变换

数字图像处理是一门集计算机科学.光学.数学.物理学等多学科的综合科学.随着计算机科学的发展,数字图像处理技术取得了巨大的进展,呈现出强大的生命力,已经在多种领域取得了大量的应用,推动了社会的发展.其中,遥感领域中,对于影像数据的处理均基于数字图像处理的技术.而遥感影像数据作为地理信息科学的重要数据源,如何从中获取有用的信息,是地理信息数据处理中重要的内容. MATLAB作为数学领域应用最广泛的一种软件,集成了对于图片处理的函数和功能,成为了处理数字图像问题的佼佼者.其出众的计算能力和简便的绘图能

看得懂的傅立叶变换

说起傅立叶变换,大部分科班出身的都上过课,但真正深入理解的,很少,用的起来的,就更少了. 傅立叶变换,本质上就是用一组特征量来对一个信号的一种描述.比如我们描述一个人,就是把一个人从地球上70亿人口唯一的表达出来,于是我们引入了一组特征量: 1.国籍,这样就约束在中国12亿人口内了 2.省份,大概约束在1亿以内了 3.县市,千万级别了 4.乡镇,最多也就是百十万 5.街道,那就是以万.千为记了 6.门牌号,就剩下一口几个人了 7.姓名 这个就是,它唯一的表达了一个有限量70亿分之一. 那么还有其