tyvj 1884 [NOIP2000T4]方格取数 || codevs 1043 dp

P1884 [NOIP2000T4]方格取数

时间: 1000ms / 空间: 131072KiB / Java类名: Main

背景

[noip2000T4]方格取数

描述

设有N*N的方格图(N<=10,我们将其中的某些方格中填入正整数,而其他的方格中则放入数字0。如下图所示(见样例):

某人从图的左上角的A 点出发,可以向下行走,也可以向右走,直到到达右下角的B点。在走过的路上,他可以取走方格中的数(取走后的方格中将变为数字0)。
此人从A点到B 点共走两次,试找出2条这样的路径,使得取得的数之和为最大。

输入格式

输入的第一行为一个整数N(表示N*N的方格图),接下来的每行有三个整数,前两个表示位置,第三个数为该位置上所放的数。一行单独的0表示输入结束。

输出格式

只需输出一个整数,表示2条路径上取得的最大的和。

测试样例1

输入

8

2 3 13

2 6 6

3 5 7

4 4 14

5 2 21

5 6 4

6 3 15

7 2 14

0 0 0

输出

67

取自http://www.cnblogs.com/TonyNeal/p/codevs1043.html;

思路一:

我们设f[i,j,k,l]表示第一条路走到(i,j),第二条路走到(k,l)的路线。

那么状态转移方程很好得出:

f[i,j,k,l]=max{f[i-1,j,k-1],f[i-1,j,k,l-1],f[i,j-1,k-1,l],f[i,j-1,k,l-1]}+(i==k&&j==l ? a[i][j] : a[i][j]+a[k][l])

值得注意的是:最后加上这个值的时候要注意如果路径走到同一点不能重复统计。

时间复杂度:O(n4),空间复杂度O(n4),对于本题n<=10完全足够。

思路二:

虽然思路一对于本题完全足够,但是如果n的范围大些的话,就无法办到了。

针对思路一,我们发现了问题,有一些状态是可以合并的,最重要的是:思路一,我们是同时开始走的,那么不必记录向右、向下的具体路径,只需要记录步数,显然,两条路的步数是统一的,然后再记录向下或向右的次数,就能根据这两者推算出向下或向右的次数。

那么设f[i,j,k]表示走到了第i步,第一条路径向走了j步,第二条路径向走了k步。

那么f[i,j,k]=max{f[i-1,j,k],f[i-1,j-1,k],f[i-1,j-1,k-1],f[i-1,j,k-1]}+(j==k ? a[i-j+1][i] : a[i-j+1][j]+a[i-k+1][k]);

显然,我们也要判断路径是否走到同一点,所以有后面的那个if( ? : 三目运算符)

时间复杂度:O(2n3),空间复杂度O(2n3),优化了一维。从n的四方优化至n的三方,是一个很大的进步。

#include<bits/stdc++.h>
using namespace std;
#define ll __int64
#define esp 1e-10
const int N=1e2+10,M=1e6+10,mod=1e9+7,inf=1e9+10;
int dp[N][N][N];
int mp[N][N];
int max(int x,int y,int z,int w,int u)
{
    return max(u,max(max(x,y),max(z,w)));
}
int main()
{
    int x,y,z,i,t;
    scanf("%d",&x);
    while(1)
    {
        int u,v,w;
        scanf("%d%d%d",&u,&v,&w);
        if(u==0&&v==0&&w==0)
        break;
        mp[u][v]=w;
    }
    for(i=1;i<=2*x;i++)
    {
        for(t=1;t<=i&&t<=x;t++)
        {
            for(int j=1;j<=i&&j<=x;j++)
            dp[i][t][j]=max(dp[i][t][j],dp[i-1][t-1][j],dp[i-1][t-1][j-1],dp[i-1][t][j],dp[i-1][t][j-1])+((t==j)?mp[t][i-t+1]:(mp[j][i-j+1]+mp[t][i-t+1]));
        }
    }
    printf("%d\n",dp[2*x][x][x]);
    return 0;
}
时间: 2024-10-24 15:34:55

tyvj 1884 [NOIP2000T4]方格取数 || codevs 1043 dp的相关文章

方格取数(多线程dp,深搜)

https://www.luogu.org/problem/P1004 题目描述 设有N×N的方格图(N≤9),我们将其中的某些方格中填入正整数,而其他的方格中则放入数字0.如下图所示(见样例): 某人从图的左上角的A点出发,可以向下行走,也可以向右走,直到到达右下角的B点.在走过的路上,他可以取走方格中的数(取走后的方格中将变为数字0).此人从A点到B点共走两次,试找出2条这样的路径,使得取得的数之和为最大. 输入格式 输入的第一行为一个整数N(表示N×N的方格图),接下来的每行有三个整数,前

洛谷 P1004 方格取数 【多线程DP/四维DP/】

题目描述(https://www.luogu.org/problemnew/show/1004) 设有N*N的方格图(N<=9),我们将其中的某些方格中填入正整数,而其他的方格中则放 人数字0.如下图所示(见样例): A 0 0 0 0 0 0 0 0 0 0 13 0 0 6 0 0 0 0 0 0 7 0 0 0 0 0 0 14 0 0 0 0 0 21 0 0 0 4 0 0 0 0 15 0 0 0 0 0 0 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . B 某人

luoguP1004 方格取数(四维DP)

题目链接:https://www.luogu.org/problemnew/show/P1004 思路: 这道题是四维DP的模板题,与luoguP1006传纸条基本相似,用f[i][j][k][l]表示第一个人走到(i,j),第二个人走到(k,l)时两个人取得数的和的最大值.显然复杂度最多为9×9×9×9=6561,所以这个方法可行. 状态转移方程为:f[i][j][k][l]=max(f[i][j-1][k][l-1],max(f[i][j-1][k-1][l],max(f[i-1][j][k

[CODEVS 1043] Noip 2000 方格取数

1043 方格取数 时间限制: 1s  空间限制: 128000 KB 题目描述 Description 设有N*N的方格图(N<=10,我们将其中的某些方格中填入正整数,而其他的方格中则放入数字0.如下图所示(见样例): 某人从图的左上角的A 点出发,可以向下行走,也可以向右走,直到到达右下角的B点.在走过的路上,他可以取走方格中的数(取走后的方格中将变为数字0). 此人从A点到B 点共走两次,试找出2条这样的路径,使得取得的数之和为最大. 输入描述 Input Description 输入的

【codevs1907】方格取数3(最大流最小割定理)

网址:http://codevs.cn/problem/1907/ 题意:在一个矩阵里选不相邻的若干个数,使这些数的和最大. 我们可以把它看成一个最小割,答案就是矩阵中的所有数-最小割.先把矩阵按国际象棋棋盘黑白染色(即把相邻的点分别染成白色和黑色),然后黑点连源点,白点连汇点.割掉一个点到源/汇的边就是不选择这个点,最后的目的就是使源到汇不连通(不引发题目不能选择位置相邻的数的矛盾). 然而最小割怎么求呢? 于是我们就要引入一个定理:最大流最小割定理.它的意思就是说,在一个图中,a点到b点的最

线性规划与网络流24题●09方格取数问题&amp;13星际转移问题

●(做codevs1908时,发现测试数据也涵盖了1907,想要一并做了,但因为"技术"不佳,搞了一上午) ●09方格取数问题(codevs1907  方格取数3) 想了半天,也没成功建好图: 无奈下参考题解,说是本题要求二分图点权最大独立集,然后可以由结论:"最大点权独立集 = 所有点权 - 最小点权覆盖集 = 所有点权 - 最小割集 = 所有点权 - 网络最大流"转化到求最大流(我真的很懵逼,但又感觉很有道理): 下面附上solution:(自己领悟吧) (不懂

hdu 1565 方格取数(2)(网络流之最大点权独立集)

题目链接:hdu 1565 方格取数(2) 题意: 有一个n*m的方格,每个方格有一个数,现在让你选一些数.使得和最大. 选的数不能有相邻的. 题解: 我们知道对于普通二分图来说,最大独立点集 + 最小点覆盖集 = 总点数,类似的,对于有权的二分图来说,有: 最大点权独立集 + 最小点权覆盖集 = 总点权和, 这个题很明显是要求 最大点权独立集 ,现在 总点权 已知,我们只要求出来 最小点权覆盖集 就好了,我们可以这样建图, 1,对矩阵中的点进行黑白着色(相邻的点颜色不同),从源点向黑色的点连一

P1004 方格取数

P1004 方格取数 题目描述 设有N*N的方格图(N<=9),我们将其中的某些方格中填入正整数,而其他的方格中则放 人数字0.如下图所示(见样例): A 0 0 0 0 0 0 0 0 0 0 13 0 0 6 0 0 0 0 0 0 7 0 0 0 0 0 0 14 0 0 0 0 0 21 0 0 0 4 0 0 0 0 15 0 0 0 0 0 0 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . B 某人从图的左上角的A点出发,可以向下行走,也可以向右走,直到到达右下角

hdoj 1569 方格取数(2) 【最小割】 【最大点权独立集】

方格取数(2) Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 5589    Accepted Submission(s): 1741 Problem Description 给你一个m*n的格子的棋盘,每个格子里面有一个非负数. 从中取出若干个数,使得任意的两个数所在的格子没有公共边,就是说所取数所在的2个格子不能相邻,并且取出的