HDU5863 cjj's string game(DP + 矩阵快速幂)

题目

Source

http://acm.split.hdu.edu.cn/showproblem.php?pid=5863

Description

cjj has k kinds of characters the number of which are infinite. He wants to build two strings with the characters. The lengths of the strings are both equal to n.

cjj also define a cjj_val for two string.
a[i,j] means the substring a[i],a[i+1],...,a[j-1],a[j] of string a.

cjj_val = max({ j-i+1 }) where a[i,j]=b[i,j] for every 0<=i<=j<n.

Know cjj wants to know that if he wants to build two strings with k different characters whose cjj_val is equal to m, how many ways can he do that.

Input

The first line of the input data is an integer T(1<=T<=100), means the number of test case.

Next T lines, each line contains three integers n(1<=n<=1000000000), m(1<=m<=10), k(1<=k<=26).

Output

For each test case, print one line, the number of the ways to build the string. The answer will be very large, you just need to output ans mod 1000000007.

Sample Input

2
3 2 3
3 3 3

Sample Output

108
27

分析

题目大概说用k个不同的字母,有多少种方法构造出两个长度n最长公共子串长度为m的字符串。

n的规模达到了10亿,而且又是方案数,自然就想到构造矩阵用快速幂解决。

考虑用DP解决可以这么表示状态:

  • dp[i][j]表示两个字符串前i个字符都构造好了 并且 它们后面的j个字符相同的方案数

状态的转移就是,末尾j个相同的可以转移到0个相同的也能转移到j+1个相同的(前提是j<m)。

而对于这个状态可以构造矩阵去转移,即一个(m+1)*(m+1)的矩阵,矩阵i行j列表示从末尾i个相同转移到末尾j个相同的方案数,而该矩阵的n次幂的第0行的和就是长度n的字符串末尾各个情况的方案数。
不过样表示状态最后求出来不是要求的,因为LCS小于m的也会包含于其中。那么减去小于m的方案数不就OK了!

  • 至少包含m个相同公共子串的方案数 - 至少包含m-1个相同公共子串的方案数 = 恰好包含m个相同公共子串的方案数

于是,一样再构造一个m*m的矩阵求n次幂,就OK了。

代码

#include<cstdio>
#include<cstring>
using namespace std;

struct Mat{
    int m[11][11];
    int len;
};
Mat operator*(const Mat &m1,const Mat &m2){
    Mat m={0};
    m.len=m1.len;
    for(int i=0; i<=m.len; ++i){
        for(int j=0; j<=m.len; ++j){
            for(int k=0; k<=m.len; ++k){
                m.m[i][j]+=(long long)m1.m[i][k]*m2.m[k][j]%1000000007;
                m.m[i][j]%=1000000007;
            }
        }
    }
    return m;
}

int main(){
    int t,n,m,k;
    scanf("%d",&t);
    while(t--){
        scanf("%d%d%d",&n,&m,&k);

        Mat e={0},me={0};
        e.len=m; me.len=m;
        for(int i=0; i<=m; ++i) e.m[i][i]=1;
        for(int i=0; i<=m; ++i){
            if(i<m) me.m[i][i+1]=k;
            me.m[i][0]=k*k-k;
        }
        int exp=n;
        while(exp){
            if(exp&1) e=e*me;
            me=me*me;
            exp>>=1;
        }
        int ans=0;
        for(int i=0; i<=m; ++i){
            ans+=e.m[0][i];
            ans%=1000000007;
        }

        memset(e.m,0,sizeof(e.m));
        memset(me.m,0,sizeof(me.m));
        e.len=m-1; me.len=m-1;
        for(int i=0; i<m; ++i) e.m[i][i]=1;
        for(int i=0; i<m; ++i){
            if(i<m-1) me.m[i][i+1]=k;
            me.m[i][0]=k*k-k;
        }
        exp=n;
        while(exp){
            if(exp&1) e=e*me;
            me=me*me;
            exp>>=1;
        }
        for(int i=0; i<m; ++i){
            ans-=e.m[0][i];
            ans%=1000000007;
        }

        if(ans<0) ans+=1000000007;
        printf("%d\n",ans);
    }
    return 0;
}

HDU5863 cjj's string game(DP + 矩阵快速幂)

时间: 2024-10-09 21:16:16

HDU5863 cjj's string game(DP + 矩阵快速幂)的相关文章

POJ3735 Training little cats DP,矩阵快速幂,稀疏矩阵优化

题目大意是,n只猫,有k个动作让它们去完成,并且重复m次,动作主要有三类gi,ei,s i j,分别代表第i只猫获得一个花生,第i只猫吃掉它自己所有的花生,第i只和第j只猫交换彼此的花生.k,n不超过100,m不超过1000,000,000,计算出最后每只猫还剩下多少个花生. 我们假设一个n维向量P,每个分量的值代表这n只猫所拥有的花生数,那么对于gi操作其实就是在第i维分量上加上1:对于ei,那就是在第i维分量上乘以0,说到这里,有木有感觉这很像3D坐标转化中的平移矩阵和缩放矩阵?没错,就是这

POJ3420 Quad Tiling DP + 矩阵快速幂

题目大意是用1*2的骨牌堆积成4*N的矩形,一共有多少种方法,N不超过10^9. 这题和曾经在庞果网上做过的一道木块砌墙几乎一样.因为骨牌我们可以横着放,竖着放,我们假设以4为列,N为行这样去看,并且在骨牌覆盖的位置上置1,所以一共最多有16种状态.我们在第M行放骨牌的时候,第M+1行的状态也是有可能被改变的,设S(i,j)表示某一行状态为i时,将其铺满后下一行状态为j的方案书.考虑下如果我们让矩阵S和S相乘会有什么意义,考虑一下会发现S*S的意义当某行状态为i,接着其后面第2行的状态为j的可行

hdu 4878 ZCC loves words(AC自动机+dp+矩阵快速幂+中国剩余定理)

hdu 4878 ZCC loves words(AC自动机+dp+矩阵快速幂+中国剩余定理) 题意:给出若干个模式串,总长度不超过40,对于某一个字符串,它有一个价值,对于这个价值的计算方法是这样的,设初始价值为V=1,假如这个串能匹配第k个模式串,则V=V*prime[k]*(i+len[k]),其中prime[k]表示第k个素数,i表示匹配的结束位置,len[k]表示第k个模式串的长度(注意,一个字符串可以多次匹配同意个模式串).问字符集为'A'-'Z'的字符,组成的所有的长为L的字符串,

HDU 2294 Pendant (DP+矩阵快速幂降维)

HDU 2294 Pendant (DP+矩阵快速幂降维) ACM 题目地址:HDU 2294 Pendant 题意: 土豪给妹子做首饰,他有K种珍珠,每种N个,为了炫富,他每种珍珠都要用上.问他能做几种长度[1,N]的首饰. 分析: 1 ≤ N ≤ 1,000,000,000简直可怕. 首先想dp,很明显可以想到: dp[i][j] = (k-(j-1))*dp[i-1][j-1] + j*dp[i-1][j](dp[i][j]表示长度为i的并且有j种珍珠的垂饰有多少个) 然后遇到N太大的话,

HDU 5434 Peace small elephant 状压dp+矩阵快速幂

题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5434 Peace small elephant Accepts: 38 Submissions: 108 Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) 问题描述 小明很喜欢国际象棋,尤其喜欢国际象棋里面的大象(只要无阻挡能够斜着走任意格),但是他觉得国际象棋里的大象太凶残了,于是他

UVA 11651 - Krypton Number System(DP+矩阵快速幂)

UVA 11651 - Krypton Number System 题目链接 题意:给一个进制base,一个分数score求该进制下,有多少数满足一下条件: 1.没有连续数字 2.没有前导零 3.分数为score,分数的计算方式为相邻数字的平方差的和 思路:先从dp入手,dp[i][j]表示组成i,最后一个数字为j的种数,然后进行状态转移,推出前面一步能构成的状态,也就是到dp[(b - 1) * (b - 1)][x]. 然后可以发现后面的状态,都可以由前面这些状态统一转移出来,这样就可以利用

Codeforces Round #291 (Div. 2) E - Darth Vader and Tree (DP+矩阵快速幂)

这题想了好长时间,果断没思路..于是搜了一下题解.一看题解上的"快速幂"这俩字,不对..这仨字..犹如醍醐灌顶啊...因为x的范围是10^9,所以当时想的时候果断把dp递推这一方法抛弃了.我怎么就没想到矩阵快速幂呢.......还是太弱了..sad..100*100*100*log(10^9)的复杂度刚刚好. 于是,想到了矩阵快速幂后,一切就变得简单了.就可以把距离<=x的所有距离的点数都通过DP推出来,然后一个快速幂就解决了. 首先DP递推式很容易想到.递推代码如下: for(

POJ 3420 Quad Tiling 状压DP+矩阵快速幂

链接:http://poj.org/problem?id=3420 题意:给一个4*N(1 ≤ N ≤ 1e9)的矩形空间,并且给不限块数的1*2的多米诺骨牌,问是由多少种方式能把这个矩形空间填满. 思路:看到这种问题果断想到状压,虽然是在看矩阵的时候看到的这道题.dp[i][j]表示在第i行状态为j的情况下的填满方式数,j的二进制表示中0表示对应位置上一行的骨牌是竖放,或者对应位置的骨牌是横放,1则表示该行该位置的骨牌是竖放.由于N最大1e9所以O(n)的DP绝对超时,用矩阵快速幂来加速DP递

POJ3744——概率DP 矩阵快速幂优化——Scout YYF I

http://poj.org/problem?id=3744 矩阵快速幂: 利用DP的递推式 就本题来说 dp[i] = p*dp[i-1] + (1-p)*dp[i-2] 由于x非常大最大1亿,这样的话复杂度就为1亿 所以这里可以用矩阵的思想 [dp[i]   dp[i-1] ] = [ dp[i-1]  dp[i-2] ] | p   1 - p| | 1      0  | 递推得到 n - 1 [dp[n]   dp[n-1]] = [dp[1]   dp[2] ] |p   1 - p