树网的核(codevs 1167)题解

【问题描述】

设T=(V, E, W) 是一个无圈且连通的无向图(也称为无根树),每条边到有正整数的权,我们称T为树网(treebetwork),其中V,E分别表示结点与边的集合,W表示各边长度的集合,并设T有n个结点。

路径:树网中任何两结点a,b都存在唯一的一条简单路径,用d(a, b)表示以a, b为端点的路径的长度,它是该路径上各边长度之和。我们称d(a, b)为a, b两结点间的距离。

D(v, P)=min{d(v, u), u为路径P上的结点}。

树网的直径:树网中最长的路径成为树网的直径。对于给定的树网T,直径不一定是唯一的,但可以证明:各直径的中点(不一定恰好是某个结点,可能在某条边的内部)是唯一的,我们称该点为树网的中心。

偏心距ECC(F):树网T中距路径F最远的结点到路径F的距离,即

ECC(F)=max{d(v, F),v∈V}

任务:对于给定的树网T=(V, E, W)和非负整数s,求一个路径F,他是某直径上的一段路径(该路径两端均为树网中的结点),其长度不超过s(可以等于s),使偏心距ECC(F)最小。我们称这个路径为树网T=(V, E, W)的核(Core)。必要时,F可以退化为某个结点。一般来说,在上述定义下,核不一定只有一个,但最小偏心距是唯一的。

下面的图给出了树网的一个实例。图中,A-B与A-C是两条直径,长度均为20。点W是树网的中心,EF边的长度为5。如果指定s=11,则树网的核为路径DEFG(也可以取为路径DEF),偏心距为8。如果指定s=0(或s=1、s=2),则树网的核为结点F,偏心距为12。

【样例输入1】

5 2
    1 2 5
    2 3 2
    2 4 4
    2 5 3

【样例输出1】

5

【样例输入2】

8 6
    1 3 2
    2 3 2
    3 4 6
    4 5 3
    4 6 4
    4 7 2
    7 8 3

【样例输出2】

5

【解题思路】

本题为NOIP2007提高组第四题,是不是感觉题目都不想看?各种专有名词,篇幅极长,总会有点抵触心理的。但是,说实话这道题真不难,把题目的意思浓缩一下就是要你求一段最长的路径,然后在整个图中的每一个点到该路径上的点的最大长度的最小值即是答案。而且这段路径上长度不超过s的路径才可以去找,甚至这条路径可能是一个点。

明白题目之后就很好办了,首先floyed把所有路径长求出来,然后在其中找最大值,那么怎么判断我们要找的路径(点)在直径上呢?可以这么做:如果从直径的起点出发到该路径(点)的距离与该路径到直径的终点的距离相加为直径的距离则说明该路径(点)在直径上。那么,怎么确定一条路径上所有的点呢?这里,我用road[i,j]记录i-j这条路径上j的前一个节点,至于怎么更新,详见代码,大家可以把这个方法记下来。然后就是求最大值和求最小值的问题了。

【代码实现】

 1 var n,s,i,j,x,y,z,k,max,min,maxlen,maxi,maxj,q,minx:longint;
 2     a,road:array[1..300,1..300] of longint;
 3 begin
 4  readln(n,s);
 5  for i:=1 to n do
 6   for j:=1 to n do
 7    a[i,j]:=maxint;
 8  for i:=1 to n-1 do
 9   begin
10    readln(x,y,z);
11    a[x,y]:=z;
12    a[y,x]:=z;
13    road[x,y]:=x;
14    road[y,x]:=y;//road数组初始化
15   end;
16  for k:=1 to n do
17   for i:=1 to n do
18    for j:=1 to n do
19     if a[i,k]+a[k,j]<a[i,j] then
20      begin
21       a[i,j]:=a[i,k]+a[k,j];
22       road[i,j]:=road[k,j];//随floyed的更新而更新
23      end;
24  min:=maxlongint;
25  for i:=1 to n do
26   begin
27    road[i,i]:=0;
28    a[i,i]:=0;
29   end;
30  for i:=1 to n do
31   for j:=1 to n do
32    if a[i,j]>maxlen then
33     begin
34      maxlen:=a[i,j];
35      maxi:=i;
36      maxj:=j;
37     end;
38  for i:=1 to n do
39   for j:=1 to n do
40    if (a[i,j]<=s)and(a[maxi,i]+a[i,j]+a[j,maxj]=maxlen) then
41     begin
42      max:=0;
43      for q:=1 to n do
44       begin
45        k:=j;
46        minx:=maxlongint;
47        while k<>0 do
48         begin
49          if a[q,k]<minx then
50           minx:=a[q,k];
51          k:=road[i,k];
52         end;
53        if minx>max then
54         max:=minx;
55       end;
56      if max<min then
57       min:=max;
58     end;
59  writeln(min);
60 end.
时间: 2024-10-17 06:00:35

树网的核(codevs 1167)题解的相关文章

[bzoj1999]树网的核

从下午坑到网上..原来noip的数据真是太弱了,若干的地方写挂结果还随便过= = 最坑的就是网上有些题解没考虑周全...然而noip数据太弱了noip数据太弱了noip数据太弱了 第一步是找直径,用两次bfs(或者dfs,Linux下系统栈挺大的..)解决.找出其中一条直径就可以了,虽然蒟蒻不会证明但是看起来似乎挺有道理的 要看证明的话可以看这个题解:http://trinklee.blog.163.com/blog/static/238158060201411175015709/ 直径上的路径

noip2007 树网的核

P1099 树网的核 112通过 221提交 题目提供者该用户不存在 标签动态规划树形结构2007NOIp提高组 难度提高+/省选- 提交该题 讨论 题解 记录 题目描述 设T=(V, E, W) 是一个无圈且连通的无向图(也称为无根树),每条边到有正整数的权,我们称T为树网(treebetwork),其中V,E分别表示结点与边的集合,W表示各边长度的集合,并设T有n个结点. 路径:树网中任何两结点a,b都存在唯一的一条简单路径,用d(a, b)表示以a, b为端点的路径的长度,它是该路径上各边

NOIP 2007树网的核

题目描述 设T=(V, E, W) 是一个无圈且连通的无向图(也称为无根树),每条边到有正整数的权,我们称T为树网(treebetwork),其中V,E分别表示结点与边的集合,W表示各边长度的集合,并设T有n个结点. 路径:树网中任何两结点a,b都存在唯一的一条简单路径,用d(a, b)表示以a, b为端点的路径的长度,它是该路径上各边长度之和.我们称d(a, b)为a, b两结点间的距离. D(v, P)=min{d(v, u), u为路径P上的结点}. 树网的直径:树网中最长的路径成为树网的

[BZOJ1999][codevs1167][Noip2007]Core树网的核

试题描述 设T=(V, E, W) 是一个无圈且连通的无向图(也称为无根树),每条边带有正整数的权,我们称T为树网(treenetwork),其中V, E分别表示结点与边的集合,W表示各边长度的集合,并设T有n个结点. 路径:树网中任何两结点a,b都存在唯一的一条简单路径,用d(a,b)表示以a,b为端点的路径的长度,它是该路径上各边长度之和.我们称d(a,b)为a,b两结点间的距离. 一点v到一条路径P的距离为该点与P上的最近的结点的距离: d(v,P)=min{d(v,u),u为路径P上的结

树网的核[树 floyd]

描述 设T=(V, E, W) 是一个无圈且连通的无向图(也称为无根树),每条边到有正整数的权,我们称T为树网(treebetwork),其中V,E分别表示结点与边的集合,W表示各边长度的集合,并设T有n个结点. 路径:树网中任何两结点a,b都存在唯一的一条简单路径,用d(a, b)表示以a, b为端点的路径的长度,它是该路径上各边长度之和.我们称d(a, b)为a, b两结点间的距离. D(v, P)=min{d(v, u), u为路径P上的结点}. 树网的直径:树网中最长的路径成为树网的直径

Luogu_P1099 树网的核 树的直径

Luogu_P1099 树网的核 ### 树的直径 题目链接 题面好长,都不想看 又是明明显显的树的直径的题 可以有很多种答案更新方法: 方法一 可以\(O(n^2)\)的枚举核的一端\(p\)得出\(p+s\)和离他们的最远的点 方法二 可以二分偏心距,\(O(nlogsum)\) 方法三 求出最长链,然后分别求他们的最远点的距离\(fr[i]\) \(a[i]\)存的是链的点编号 然后偏心距就是\(\max(fr[a[k]]\max(d[a[i]],d[a[1]]-d[a[j]]))\) 再

【DFS好题】BZOJ1999- [Noip2007]Core树网的核(数据加强版)

NOIP的数据好水,一开始有好几个错结果NOIP数据就水过了?? [题目大意] 求无根树的直径上一段不超过S长的链,使得偏心距最小.具体概念见原题. [思路] 首先明确几个性质: (1)对于树中的任意一点,距离其最远的点一定是树的直径的某一端点. (2)所有的直径是等价的,即任意一条所能求出的该最小偏心距相等. 于是我们可以用两次dfs求出直径.任取一个点找到离它最远的点r,再从r找到距离它最远的点l.l到r的路径就是直径. 显然在长度不超过S的情况下,链最长最好.在l到r上维护尽可能长的链,找

P1099 树网的核

NOIP 2007 提高第四题. 啊......我还是看了题解才做出来的. 这题乍一看毫无头绪,但是我们spy on一下,暗中观察发现:n才300!随便打暴力水过去啊! 然后,这破题怎么暴力?感觉我的spfa,dijkstra都WA2了... 最后还是跑去看了题解. 一步一步慢慢模拟就出来了. 首先,肯定要跑floyd的. 然后,我们居然还要个邻接表来存图......(用来dfs求直径) 无脑Floyd的同时,记录一条直径的起点,终点. find_d求了一条直径上的所有点. 然后find_f求出

code1167 树网的核

floyd+枚举 看点: 1.floyd同时用数组p记录转移节点k,这样知道线段的端点u v就可以得到整条线段 2.任意一点c到线段a b的距离=(d[a][c]+d[c][b]-d[a][b])/2 3.枚举直径st en的所有子线段a b: for(int a=en;a;a=p[st][a]) for(int b=a;b;b=p[st][b]) 代码: #include<iostream> #include<cstring> #define Size 305 using nam