区间DP--凸多边形三角剖分

给定一个具有N(N<50)个顶点(从1到N编号)的凸多边形,每个顶点的权均已知。问如何把这个凸多边形划分成N-2个互不相交的三角形,使得这些三角形顶点的权的乘积之和最小?

输入文件:第一行 顶点数N

第二行 N个顶点(从1到N)的权值

输出格式:最小的和的值

样例:5

1 2 3 4 5

输出:38

 1 /*没找到交的OJ网站,就自己造了几组数据试了一下
 2 区间型DP的转移方程:一般涉及区间的起点和延伸的长度
 3 f[i][j]表示从i开始j长度的区间分割三角形的最小乘积和,把端点i,i+j-1可以与区间内任意一个不与i,i+j-1相邻的点组成三角形,所以枚举中间点k即可*/
 4 #include<iostream>
 5 using namespace std;
 6 #include<cstdio>
 7 #include<cstring>
 8 #define N 120
 9 #define MAX (1<<31)-1
10 long long a[N];
11 long long f[N][N];
12 int n;
13 int main()
14 {
15     scanf("%d",&n);
16     for(int i=1;i<=n;++i)
17     {
18         scanf("%d",&a[i]);
19         a[i+n]=a[i];/*把这条多边形变成两倍的链条*/
20     }
21     memset(f,127,sizeof(f));
22     for(int i=1;i<=2*n-2;++i)
23      f[i][3]=a[i]*a[i+1]*a[i+2];/*初始化*/
24     for(int j=4;j<=n;++j)
25        for(int i=1;i+j<=2*n+1;++i)
26          for(int k=i+2;i+j-k>=3;++k)/*枚举k*/
27          f[i][j]=min(f[i][j],f[i][k-i+1]+f[k][i+j-k]+a[i]*a[k]*a[i+j-1]);
28    long long ans=MAX;
29    for(int i=1;i<=n;++i)/*注意最后把所有点作为区间端点长度为n的情况都枚举,找出最小值*/
30      ans=min(ans,f[i][n]);
31    cout<<ans<<endl;
32     return 0;
33 }
时间: 2024-10-05 22:28:47

区间DP--凸多边形三角剖分的相关文章

Uva 1331 - Minimax Triangulation(最优三角剖分 区间DP)

题目大意:按照顺时针或者逆时针的顺序给出多边的点,要将这个多边形分解成n-2个三角形,要求使得这些三角行中面积最大的三角形面积尽量小,求最小值. 思路:用区间DP可以很方便解决,多边形可能是凹边形,注意剖分的三角形必须在多边形内部,所以可以去掉剖分的三角形中包含其他点,但是其他的在多边形外部的三角形没想到其他方法去除,却ac了,不懂为何 // Accepted C++ 0.042 #include<cstdio> #include<iostream> #include<alg

ZOJ 3537 Cake 求凸包 区间DP

题意:给出一些点表示多边形顶点的位置(如果多边形是凹多边形就不能切),切多边形时每次只能在顶点和顶点间切,每切一次都有相应的代价.现在已经给出计算代价的公式,问把多边形切成最多个不相交三角形的最小代价是多少. 思路:首先判断多边形是否是凸多边形,之后就是区间dp了. 求出凸包后,按逆时针来看. 设置dp[i][j]为从顶点i到顶点j所围成凸多边形的最优解. 枚举切点k (i < k < j) dp[i][j] = min(dp[i][k] + dp[k][j] + cost[i][k] + c

UVA 1331 Minimax Triangulation 区间DP

区间DP: 将一个多边形三角剖分,让可以得到的最大三角形的面积最小 dp[i][j]表示从i点到j点的最优值,枚举中间点k dp[i][j]=min(dp[i][j],max(area(i,j,k),max(dp[i][k],dp[k][j]))); 注意如果中间三角形i-j-k中有其他的点,这样的三角形是不可以剖分的 Minimax Triangulation Time Limit: 3000MS   Memory Limit: Unknown   64bit IO Format: %lld

zoj 3537 Cake (凸包判定+区间dp)

Cake Time Limit: 1 Second      Memory Limit: 32768 KB You want to hold a party. Here's a polygon-shaped cake on the table. You'd like to cut the cake into several triangle-shaped parts for the invited comers. You have a knife to cut. The trace of eac

ZOJ 3537 Cake(凸包+区间DP)

题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3537 题目大意:给出一些点表示多边形顶点的位置,如果不是凸多边形(凸包)则不能切,直接输出"I can't cut."切多边形时每次只能在顶点和顶点间切,每切一次的花费为 cost(i, j) = |xi + xj| * |yi + yj| % p.问把多边形切成最多个不相交三角形的最小代价是多少. 解题思路:先求出凸包,接着可以用区间DP解决,设dp

『一本通』区间DP

石子合并 1 #include<bits/stdc++.h> 2 #define INF 0x3f3f3f3f 3 using namespace std; 4 int n,sm[505][505],bg[505][505],sum[505]; 5 inline int read() { 6 int x=0,f=1; char c=getchar(); 7 while(c<'0'||c>'9') {if(c=='-')f=-1; c=getchar();} 8 while(c>

uva 10003 Cutting Sticks 简单区间dp

// uva 10003 Cutting Sticks 区间dp // 经典的区间dp // dp(i,j)表示切割小木棍i-j所需要的最小花费 // 则状态转移为dp(i,j) = min{dp(i,k) + dp(k,j) + a[j]-a[i]) // 其中k>i && k<j // a[j] - a[i] 为第一刀切割的代价 // a[0] = 0,a[n+1] = L; // dp数组初始化的时候dp[i][i+1]的值为 0,这表示 // 每一段都已经是切割了的,不

黑书例题 Fight Club 区间DP

题目可以在bnuoj.soj等OJ上找到. 题意: 不超过40个人站成一圈,只能和两边的人对战.给出任意两人对战的输赢,对于每一个人,输出是否可能是最后的胜者. 分析: 首先序列扩展成2倍,破环成链. dp[i][j]表示i和j能够相遇对打,那么dp[i][i+n]为真代表可以成为最后胜者. 枚举中间的k,若i和j都能和k相遇,且i和j至少一人能打赢k,那么i和j可以相遇. 复杂度o(n^3) 1 #include<cstdio> 2 #include<cstring> 3 usi

算法复习——区间dp

感觉对区间dp也不好说些什么直接照搬讲义了2333 例题: 1.引水入城(洛谷1514) 这道题先开始看不出来到底和区间dp有什么卵关系···· 首先肯定是bfs暴力判一判可以覆盖到哪些城市····无解直接输出···有解得话就要想想了···· 这道题关键是要发现··如果一个蓄水池所在城市可以覆盖到一些沙漠城市···那么这些沙漠城市肯定是一段····不然假设有一个城市是断开的而两边都被同一个蓄水池流出的水覆盖,这个城市四周的城市都肯定比它矮···(不理解举个反例吧···反正我举不出来)···然后就

合并石子 区间dp水题

合并石子 链接: nyoj 737 描述: 有N堆石子排成一排,每堆石子有一定的数量.现要将N堆石子并成为一堆.合并的过程只能每次将相邻的两堆石子堆成一堆,每次合并花费的代价为这两堆石子的和,经过N-1次合并后成为一堆.求出总的代价最小值. tags:最基本的区间dp,这题范围小,如果n大一些,还是要加个平行四边行优化. #include<iostream> #include<cstdio> #include<cstdlib> #include<cstring&g