android Gui系统之SurfaceFlinger(1)

GUI 是任何系统都很重要的一块。

android GUI大体分为4大块。

1)SurfaceFlinger

2)WMS

3)View机制

4)InputMethod

这块内容非常之多,但是理解后,可以触类旁通,其实现在主流的系统,包括andorid,ios在构架上,都是有很多相识之处。

我们先来讲SurfaceFlinger

1.OpenGL & OpenGL ES

OPenGL ES 是android系统绘画的基础。关于OpenGL部分,可以百度了解下。

先来看一个OpenGL & SurfaceFlinger之间的框架图:

从底层往上看:

1)linux内核提供统一的设备驱动,/dev/graphics/fb*

2) Android HAL 提供2个接口 Gralloc & fb

fb 负责打开framebuffer,提供接口操作。gralloc负责管理帧缓冲区的分配和释放。

composer是HAL中另一个重要的功能,它主要是给厂商定制UI合成。SurfaceFlinger中负责HWComposer会用到这个功能。

而且关键是HWComposer还负责产生VSync信号,这是本期SurfaceFlinger的重点。

3)由于OpenGL是一套通用的库(大部分就是接口),所以它需要一个本地的实现。andorid平台OpenGL有2个本地窗口,FrameBufferNativeWindow & Surface。

4)OpenGL可以有软件 或者依托于硬件实现,具体的运行状态,就是由EGL来配置。

5)SurfaceFlinger持有一个成员数组mDisplays来支持各种显示设备。DisplayDevices在初始化的时候调用EGL来搭建OpenGL的环境。

2.Android的硬件接口HAL

HAL需要满足android系统和厂商的要求

2.1硬件接口的抽象

从面向对象角度来讲,接口的概念就是由C++非常容易实现,但是HAL很多代码是C语言描述的。

这就需要一种技巧来实现面向对象。

定义一种结构,子类的成员变量第一个类型是父类的结构就可以了。抽象方法可以用函数指针来实现。

其实这个就是C++多态实现的基本原理,具体可参考《深入理解C++对象模型》

2.2接口的稳定性

Android已经把各个硬件都接口都统一定义在:

libhardware/include/hardware/ 具体代码可以参考:https://github.com/CyanogenMod/android_hardware_libhardware/tree/cm-12.0/include/hardware

3.Android显示设备:Gralloc &  FrameBuffer

FrameBuffer是linux环境下显示设备的统一接口。从而让用户设备不需要做太多的操作,就可以适配多种显示设备。

FramwBuffer本质上就是一套接口。android系统不会直接操作显示驱动,而通过HAL层来封装。而HAL中操作驱动的模块就是

gralloc。

3.1Gralloc模块的加载

gralloc通过FrameBufferNativeWindow 来加载的:

FramebufferNativeWindow::FramebufferNativeWindow()
    : BASE(), fbDev(0), grDev(0), mUpdateOnDemand(false)
{
    hw_module_t const* module;
    if (hw_get_module(GRALLOC_HARDWARE_MODULE_ID, &module) == 0) {
        int stride;
        int err;
        int i;
        err = framebuffer_open(module, &fbDev);
        ALOGE_IF(err, "couldn‘t open framebuffer HAL (%s)", strerror(-err));

        err = gralloc_open(module, &grDev);
        ALOGE_IF(err, "couldn‘t open gralloc HAL (%s)", strerror(-err));

        // bail out if we can‘t initialize the modules
        if (!fbDev || !grDev)
            return;

        mUpdateOnDemand = (fbDev->setUpdateRect != 0);

        // initialize the buffer FIFO
        if(fbDev->numFramebuffers >= MIN_NUM_FRAME_BUFFERS &&
           fbDev->numFramebuffers <= MAX_NUM_FRAME_BUFFERS){
            mNumBuffers = fbDev->numFramebuffers;
        } else {
            mNumBuffers = MIN_NUM_FRAME_BUFFERS;
        }
        mNumFreeBuffers = mNumBuffers;
        mBufferHead = mNumBuffers-1;

        /*
         * This does not actually change the framebuffer format. It merely
         * fakes this format to surfaceflinger so that when it creates
         * framebuffer surfaces it will use this format. It‘s really a giant
         * HACK to allow interworking with buggy gralloc+GPU driver
         * implementations. You should *NEVER* need to set this for shipping
         * devices.
         */
#ifdef FRAMEBUFFER_FORCE_FORMAT
        *((uint32_t *)&fbDev->format) = FRAMEBUFFER_FORCE_FORMAT;
#endif

        for (i = 0; i < mNumBuffers; i++)
        {
                buffers[i] = new NativeBuffer(
                        fbDev->width, fbDev->height, fbDev->format, GRALLOC_USAGE_HW_FB);
        }

        for (i = 0; i < mNumBuffers; i++)
        {
                err = grDev->alloc(grDev,
                        fbDev->width, fbDev->height, fbDev->format,
                        GRALLOC_USAGE_HW_FB, &buffers[i]->handle, &buffers[i]->stride);

                ALOGE_IF(err, "fb buffer %d allocation failed w=%d, h=%d, err=%s",
                        i, fbDev->width, fbDev->height, strerror(-err));

                if (err)
                {
                        mNumBuffers = i;
                        mNumFreeBuffers = i;
                        mBufferHead = mNumBuffers-1;
                        break;
                }
        }

        const_cast<uint32_t&>(ANativeWindow::flags) = fbDev->flags;
        const_cast<float&>(ANativeWindow::xdpi) = fbDev->xdpi;
        const_cast<float&>(ANativeWindow::ydpi) = fbDev->ydpi;
        const_cast<int&>(ANativeWindow::minSwapInterval) =
            fbDev->minSwapInterval;
        const_cast<int&>(ANativeWindow::maxSwapInterval) =
            fbDev->maxSwapInterval;
    } else {
        ALOGE("Couldn‘t get gralloc module");
    }

    ANativeWindow::setSwapInterval = setSwapInterval;
    ANativeWindow::dequeueBuffer = dequeueBuffer;
    ANativeWindow::queueBuffer = queueBuffer;
    ANativeWindow::query = query;
    ANativeWindow::perform = perform;

    ANativeWindow::dequeueBuffer_DEPRECATED = dequeueBuffer_DEPRECATED;
    ANativeWindow::lockBuffer_DEPRECATED = lockBuffer_DEPRECATED;
    ANativeWindow::queueBuffer_DEPRECATED = queueBuffer_DEPRECATED;
}

FramebufferNativeWindow

我们继续深入看:

galloc的父类,最终是:

libhardware\include\hardware\hardware.h

typedef struct hw_module_methods_t {
    /** Open a specific device */
    int (*open)(const struct hw_module_t* module, const char* id,
            struct hw_device_t** device);

} hw_module_methods_t;

只有一个open方法,也就是所有的厂商都需要实现开启设备的方法。

看下fb的打开的代码:

libhardware\modules\gralloc\framebuffer.cpp

int fb_device_open(hw_module_t const* module, const char* name,
        hw_device_t** device)
{
    int status = -EINVAL;
    if (!strcmp(name, GRALLOC_HARDWARE_FB0)) {
        /* initialize our state here */
        fb_context_t *dev = (fb_context_t*)malloc(sizeof(*dev));
        memset(dev, 0, sizeof(*dev));

        /* initialize the procs */
        dev->device.common.tag = HARDWARE_DEVICE_TAG;
        dev->device.common.version = 0;
        dev->device.common.module = const_cast<hw_module_t*>(module);
        dev->device.common.close = fb_close;
        dev->device.setSwapInterval = fb_setSwapInterval;
        dev->device.post            = fb_post;
        dev->device.setUpdateRect = 0;

        private_module_t* m = (private_module_t*)module;
        status = mapFrameBuffer(m);
        if (status >= 0) {
            int stride = m->finfo.line_length / (m->info.bits_per_pixel >> 3);
            int format = (m->info.bits_per_pixel == 32)
                         ? (m->info.red.offset ? HAL_PIXEL_FORMAT_BGRA_8888 : HAL_PIXEL_FORMAT_RGBX_8888)
                         : HAL_PIXEL_FORMAT_RGB_565;
            const_cast<uint32_t&>(dev->device.flags) = 0;
            const_cast<uint32_t&>(dev->device.width) = m->info.xres;
            const_cast<uint32_t&>(dev->device.height) = m->info.yres;
            const_cast<int&>(dev->device.stride) = stride;
            const_cast<int&>(dev->device.format) = format;
            const_cast<float&>(dev->device.xdpi) = m->xdpi;
            const_cast<float&>(dev->device.ydpi) = m->ydpi;
            const_cast<float&>(dev->device.fps) = m->fps;
            const_cast<int&>(dev->device.minSwapInterval) = 1;
            const_cast<int&>(dev->device.maxSwapInterval) = 1;
            *device = &dev->device.common;
        }
    }
    return status;
}

首先check设备名是否正确。

分配dev的空间,这是一个壳。

然后初始化dev。

提供fb的核心接口

内存映射

status = mapFrameBuffer(m);

然后是建立壳 & 核心间的关系。

这样就打开了fb设备。

在回到FrameBufferNativeWindow 可以看到:

        err = framebuffer_open(module, &fbDev);
        ALOGE_IF(err, "couldn‘t open framebuffer HAL (%s)", strerror(-err));

        err = gralloc_open(module, &grDev);
        ALOGE_IF(err, "couldn‘t open gralloc HAL (%s)", strerror(-err));

fb打开的驱动信息在fbDev,gralloc打开的信息在grDev中。

fbDev负责的是主屏幕,grDev负责图形缓冲去的分配和释放。

所以FrameBufferNativeWindow控制这SurfaceFlinger的基础。

4.FrameBufferNativeWindow

4.1FramebufferNativeWindow

在OpenGL中,我们不断提及本地窗口的概念,在Android中,native window一共由2个。

一个是面向管理者(SurfaceFlinger)的 FramebufferNativeWindow

另一个是面像APP的,surface。

先来看第一种:
首先看下定义的地方:

class FramebufferNativeWindow
    : public ANativeObjectBase<
        ANativeWindow,
        FramebufferNativeWindow,
        LightRefBase<FramebufferNativeWindow> >
{

ANativeWindow是什么东西?

ANativeWindow是OpenGL 在android平台的显示类型。

所以FramebufferNativeWindow就是一种Open GL可以显示的类型。

FramebufferNativeWindow的构造函数上面已经贴出来了,进一步分析如下:

1)加载module,上面已经分析过了。

2)打开fb & gralloc,也已经分析过了。

3)根据fb的设备属性,获得buffer数。这个buffer后面会解释。

4)给每个buffer初始化,并分配空间。这里new NativeBuffer只是指定buffer的类型,或者分配了一个指针,但是没有分配内存,所以还需要alloc操作。

5)为本地窗口属性赋值。

目前buffer默认值是在2~3,后面会介绍3缓冲技术,就会用到3个buffer。

双缓冲技术:

把一组图画,画到屏幕上,画图是需要时间的,如果时间间隔比较长,图片就是一个一个的画在屏幕的,看上去就会卡。

如果先把图片放在一个缓冲buffer中,待全部画好后,把buffer直接显示在屏幕上,这就是双缓冲技术。

4.2dequeuebuffer

int FramebufferNativeWindow::dequeueBuffer(ANativeWindow* window,
        ANativeWindowBuffer** buffer, int* fenceFd)
{
    FramebufferNativeWindow* self = getSelf(window);
    Mutex::Autolock _l(self->mutex);
    framebuffer_device_t* fb = self->fbDev;

    int index = self->mBufferHead++;
    if (self->mBufferHead >= self->mNumBuffers)
        self->mBufferHead = 0;

    // wait for a free non-front buffer
    while (self->mNumFreeBuffers < 2) {
        self->mCondition.wait(self->mutex);
    }
    ALOG_ASSERT(self->buffers[index] != self->front);

    // get this buffer
    self->mNumFreeBuffers--;
    self->mCurrentBufferIndex = index;

    *buffer = self->buffers[index].get();
    *fenceFd = -1;

    return 0;
}

代码不多,但是却是核心功能,通过它来获取一块可渲染的buffer。

1)获取FramebufferNativeWindow对象。为什么没有使用this 而是使用了传入ANativeWindow的方式,此处我们并不关心。

2)获得一个Autolock的锁,函数结束,自动解锁。

3)获取mBufferHead变量,这里自增,也就是使用下一个buffer,一共只有3个,(原因上面已经解释),所以循环取值。

4)如果没有可用的缓冲区,等待bufferqueue释放。一旦获取后,可用buffer就自减

5.Surface

Surface是另一个本地窗口,主要和app这边交互。注意:app层java代码无法直接调用surface,只是概念上surface属于app这一层的。

首先Surface是ANativeWindow的一个子类。

可以推测,surface需要解决如下几个问题:

1)面向上层(java层)提供画板。由谁来分配这块内存

2)与SurfaceFlinger是什么关系

Surface::Surface(
        const sp<IGraphicBufferProducer>& bufferProducer,
        bool controlledByApp)

sp<IGraphicBufferProducer>& bufferProducer 是分配surface内存的。它到底是什么呢?

先来看看从ViewRootImpl到获取surface的过程。

ViewRootImpl持有一个java层的surface对象,开始是空的。

后续的流程见上面的流程图。也就是-说ViewRootImpl持有的surface对象,最终是对SurfaceComposerClient的创建的surface的一个“引用”。

由此分析可以看到 一个ISurfaceClient->ISurfaceComposerClient->IGraphicBufferProducer.当然binder需要一个实名的server来注册。

在ServiceManager中可以看到,这些服务查询的是“SurfaceFlinger”。

也就是,这些东东都是SurfaceFlinger的内容。

SurfaceFlinger::SurfaceFlinger()
    :   BnSurfaceComposer(),

SurfaceFlinger是BnSurfaceComposer的一个子类。也就是ISurfaceComposer的一个实现。

surface虽然是为app层服务的,但是本质上还是由SurfaceFlinger来管理的。

SurfaceFlinger怎么创建和管理surface,需要通过BufferQueue,将在下一篇讨论。

参考:

《深入理解android内核设计思想》 林学森

时间: 2024-10-12 14:30:42

android Gui系统之SurfaceFlinger(1)的相关文章

android Gui系统之SurfaceFlinger(1)---SurfaceFlinger概论【转】

转自:https://www.cnblogs.com/deman/p/5584198.html 阅读目录 1.OpenGL & OpenGL ES 2.Android的硬件接口HAL 3.Android显示设备:Gralloc &  FrameBuffer 4.FrameBufferNativeWindow 5.Surface GUI 是任何系统都很重要的一块. android GUI大体分为4大块. 1)SurfaceFlinger 2)WMS 3)View机制 4)InputMetho

android Gui系统之SurfaceFlinger(5)

9.Vsync第二部分 在上一篇中我们讲到,视图的刷新需要很多步骤, void SurfaceFlinger::handleMessageRefresh() { ATRACE_CALL(); preComposition(); //合成前的准备 rebuildLayerStacks();//重新建立layer堆栈 setUpHWComposer();//HWComposer的设定 #ifdef QCOM_BSP setUpTiledDr(); #endif doDebugFlashRegions

图解Android - Android GUI 系统

图解Android - Android GUI 系统 (1) - 概论 图解Android - Android GUI 系统 (2) - 窗口管理系统 图解Android - Android GUI 系统 (3) - Surface Flinger (TBD) 图解Android - Android GUI 系统 (4) - Activity的生命周期 图解Android - Android GUI 系统 (5) - Android的用户输入处理

图解Android - Android GUI 系统 (1) - 概论

http://www.cnblogs.com/samchen2009/p/3364327.html Android的GUI系统是Android最重要也最复杂的系统之一.它包括以下部分: 窗口和图形系统 - Window and View Manager System. 显示合成系统 - Surface Flinger 用户输入系统 - InputManager System 应用框架系统 - Activity Manager System. 它们之间的关系如下图所示 只有对这些系统的功能和工作原

Android GUI系统学习1:Gralloc

Gralloc模块是从Android Eclair(android 2.1)開始增加的一个HAL模块,Gralloc的含义为是Graphics Alloc(图形分配).他对上为libui提供服务,为其分配显存,刷新显示等.对下对framebuffer进行管理. gralloc代码通常位于hardware/libhardware/modules/gralloc文件夹下.包括下面几个文件: Android.mk  framebuffer.cpp  gralloc.cpp  gralloc_priv.

android Gui系统之WMS(2)----窗口的添加

Android系统很多,但是最常用的就两类,一类是有系统进场管理的,系统窗口.还有一类就是由应用程序产生的,应用窗口. 1.系统窗口的添加流程 1.1 addStatusBarWindow PhoneStatus.java中 private void addStatusBarWindow() { makeStatusBarView(); mStatusBarWindowManager = new StatusBarWindowManager(mContext); mStatusBarWindow

Android 显示系统:SurfaceFlinger完全解读

原文地址:https://www.cnblogs.com/blogs-of-lxl/p/11272756.html

10.6 android输入系统_Dispatcher线程_总体框架

图解Android - Android GUI 系统 (5) - Android的Event Input System - 漫天尘沙 - 博客园.htm // 关注里面的Dispatcher处理流程http://www.cnblogs.com/samchen2009/p/3368158.html Dispatcher线程框架: 分发 问:发什么?发给谁? Dispatcher流程如下: 获得事件: (1)放入队列前先稍加处理:分类(Global输入/System输入/User输入).处理紧急事件

Android中GUI系统的Event路由机制

前两天在论坛上看到有人发了一个帖子,询问一个Android GUI Event处理的问题:有一个LinearLayout,里面有很多的child view,他问如何监听这个LinearLayout的Click事件?他的做法是: setClickable(true); setOnClickListener(listener); 最后他发现listener中的回调函数根本不会被调用. 事实上,在Android的GUI系统的中,硬件触发的Event(KeyEvent. TouchEvent. Trac