BZOJ 3736: [Pa2013]Karty

Description

一个0/1矩阵,求能覆盖所有 \(1\) ,同时不覆盖所有 \(0\) 的矩阵,使这个面积最大.

Sol

DP/悬线法.

首先,所求的矩阵一定可以覆盖所有贴边的悬线.

用悬线法求出,高度为 \(r\) 最大的 \(c\) ,宽度为 \(c\) 最大的高度.

上下左右都要做一遍,然后更新统计答案.

上下的时候统计的是每一个高度,左右的时候统计的是每一个宽度.

这样就可以保证所有矩阵都是一个合法的矩阵了.

我多开了几个数组,发现空间炸了...然后我就开始滚了...

Code

/**************************************************************
    Problem: 3736
    User: BeiYu
    Language: C++
    Result: Accepted
    Time:6888 ms
    Memory:50412 kb
****************************************************************/

#include<cstdio>
#include<cstring>
#include<iostream>
using namespace std;

#define clr(a) memset(a,0,sizeof(a))
#define debug(a) cout<<#a<<"="<<a<<" "
const int N = 2505;

int n,m,ml,mw,s;
int a[N][N],tmp[N][N],f[2][N],L[2][N],R[2][N],l[N],r[N];
int mxc[N],mxr[N];

void work(int mxc[]){
    for(int j=1;j<=m;j++) L[0][j]=0,R[0][j]=m+1,f[0][j]=0;
    for(int i=1,cur=1;i<=n;i++){
        l[0]=0,r[m+1]=m+1;
        for(int j=m;j;--j) if(a[i][j]) r[j]=r[j+1];else r[j]=j;
        for(int j=1;j<=m;j++) if(a[i][j]){
            l[j]=l[j-1],f[cur][j]=f[cur^1][j]+1,L[cur][j]=max(L[cur^1][j],l[j]),R[cur][j]=min(R[cur^1][j],r[j]);
            int r=f[cur][j],c=R[cur][j]-L[cur][j]-1;
            mxc[r]=min(mxc[r],c);if(!a[i+1][j]){ for(int p=r+1;p<=n;p++) if(mxc[p]) mxc[p]=0;else break; }
        }else l[j]=j,f[cur][j]=0,L[cur][j]=0,R[cur][j]=m+1;
        cur^=1;
    }
}
int main(){
    scanf("%d%d",&n,&m);
    for(int i=1;i<=n;i++){
        char ch=getchar();while(ch!=‘_‘ && ch!=‘X‘) ch=getchar();
        for(int j=1;j<=m;j++) a[i][j]=ch==‘X‘,ch=getchar();
    }
    ml=mw=N,s=0;memset(mxc,0x3f,sizeof(mxc)),memset(mxr,0x3f,sizeof(mxr));
    work(mxc);
    for(int j=1;j<=m;j++) for(int i=1;i<=n/2;i++) swap(a[i][j],a[n-i+1][j]);
    work(mxc);
    for(int i=1;i<=n;i++) for(int j=1;j<=m;j++) tmp[j][i]=a[i][j],a[i][j]=0;
    for(int i=1;i<=m;i++) for(int j=1;j<=n;j++) a[i][j]=tmp[i][j];
    swap(n,m);
    work(mxr);
    for(int j=1;j<=m;j++) for(int i=1;i<=n/2;i++) swap(a[i][j],a[n-i+1][j]);
    work(mxr);
    swap(n,m);
    mxr[0]=n+1;
    for(int i=n,j=1;j<=m;j++) for(;i>mxr[j];--i) mxc[i]=min(mxc[i],j-1);
    for(int i=1;i<=n;i++) if(i*mxc[i]>s) s=i*mxc[i],ml=i,mw=mxc[i];
    printf("%d %d\n",ml,mw);
    return 0;
}

  

时间: 2024-10-08 00:41:58

BZOJ 3736: [Pa2013]Karty的相关文章

BZOJ3736 : [Pa2013]Karty

显然只需要考虑与障碍点相邻的格子,通过旋转坐标系,可以只考虑障碍点在格子上方的情况. 悬线法求出每个点往上的最长延伸距离$x$,以及往左往右的延伸距离$y$. 那么当$r\geq x$时,$c$至多为$y$. 特别地,当某个点下方也是障碍点的时候,$r$不能超过$x$. 维护出每个$r$对应的最大的$c$即可. 时间复杂度$O(nm)$. #include<cstdio> #include<algorithm> const int N=2505; int n,m,i,j,k,l[N

波兰题目补全计划

Introduce 本人比较喜欢做波兰的题目,感觉这些题目十分清真,思维也比较好.欢迎同样喜欢波兰题目的OIer来交流.以下是我有记录地刷过的题目. 比较好的题吧:BZOJ #3746.[POI2015]Czarnoksi??nicy okr?g?ego sto?u source:XXII OI - Etap I - Zadanie Czarnoksi??nicy okr?g?ego sto?u notes: 动态规划我的题解http://www.cnblogs.com/TSHugh/p/882

BZOJ 1013: [JSOI2008]球形空间产生器sphere

二次联通门 : BZOJ 1013: [JSOI2008]球形空间产生器sphere /* BZOJ 1013: [JSOI2008]球形空间产生器sphere 高斯消元 QAQ SB的我也能终于能秒题了啊 设球心的坐标为(x,y,z...) 那么就可以列n+1个方程,化化式子高斯消元即可 */ #include <cstdio> #include <iostream> #include <cstring> #define rg register #define Max

bzoj 3309 DZY Loves Math - 莫比乌斯反演 - 线性筛

对于正整数n,定义f(n)为n所含质因子的最大幂指数.例如f(1960)=f(2^3 * 5^1 * 7^2)=3, f(10007)=1, f(1)=0. 给定正整数a,b,求sigma(sigma(f(gcd(i,j)))) (i=1..a, j=1..b). Input 第一行一个数T,表示询问数. 接下来T行,每行两个数a,b,表示一个询问. Output 对于每一个询问,输出一行一个非负整数作为回答. Sample Input 4 7558588 9653114 6514903 445

【BZOJ】[HNOI2009]有趣的数列

[算法]Catalan数 [题解] 学了卡特兰数就会啦>_<! 因为奇偶各自递增,所以确定了奇偶各自的数字后排列唯一. 那么就是给2n个数分奇偶了,是不是有点像入栈出栈序呢. 将做偶数标为-1,做奇数标为+1,显然当偶数多于奇数时不合法,因为它压不住后面的奇数. 然后其实这种题目,打表就可知啦--QAQ 然后问题就是求1/(n+1)*C(2n,n)%p了,p不一定是素数. 参考bzoj礼物的解法. 看到网上清一色的素数筛+分解质因数解法,不解了好久,感觉写了假的礼物-- 后来觉得礼物的做法才比

洛谷 P2709 BZOJ 3781 小B的询问

题目描述 小B有一个序列,包含N个1~K之间的整数.他一共有M个询问,每个询问给定一个区间[L..R],求Sigma(c(i)^2)的值,其中i的值从1到K,其中c(i)表示数字i在[L..R]中的重复次数.小B请你帮助他回答询问. 输入输出格式 输入格式: 第一行,三个整数N.M.K. 第二行,N个整数,表示小B的序列. 接下来的M行,每行两个整数L.R. 输出格式: M行,每行一个整数,其中第i行的整数表示第i个询问的答案. 输入输出样例 输入样例#1: 6 4 3 1 3 2 1 1 3

BZOJ 1012: [JSOI2008]最大数maxnumber(线段树)

012: [JSOI2008]最大数maxnumber Time Limit: 3 Sec  Memory Limit: 162 MB Description 现在请求你维护一个数列,要求提供以下两种操作:1. 查询操作.语法:Q L 功能:查询当前数列中末尾L个数中的最大的数,并输出这个数的值.限制:L不超过当前数列的长度.2. 插入操作.语法:A n 功能:将n加上t,其中t是最近一次查询操作的答案(如果还未执行过查询操作,则t=0),并将所得结果对一个固定的常数D取模,将所得答案插入到数列

【BZOJ】【1016】【JSOI2008】最小生成树计数

Kruskal/并查集+枚举 唉我还是too naive,orz Hzwer 一开始我是想:最小生成树删掉一条边,再加上一条边仍是最小生成树,那么这两条边权值必须相等,但我也可以去掉两条权值为1和3的,再加上权值为2和2的,不也满足题意吗?事实上,如果这样的话……最小生成树应该是1和2,而不是1和3或2和2!!! 所以呢?所以对于一个图来说,最小生成树有几条边权为多少的边,都是固定的!所以我们可以做一遍Kruskal找出这些边权,以及每种边权出现的次数.然后,对于每种边权,比方说出现了$v_i$

【BZOJ】【2844】albus就是要第一个出场

高斯消元解XOR方程组 srO  ZYF  Orz 膜拜ZYF…… http://www.cnblogs.com/zyfzyf/p/4232100.html 1 /************************************************************** 2 Problem: 2844 3 User: Tunix 4 Language: C++ 5 Result: Accepted 6 Time:252 ms 7 Memory:2052 kb 8 *******