TCP下IO模型优劣比较

  • 多线程模型适用于处理短连接,且连接的打开关闭非常频繁的情形,但不适合处理长连接。多线程模型默认情况下,(在Linux)每个线程会开8M的栈空间,再TCP长连接的情况下,2000/分钟的请求,几乎可以假定有上万甚至十几万的并发连接,假定有10000个连接,开这么多个线程需要10000*8M=80G的内存空间!即使调整每个线程的栈空间,也很难满足更多的需求。甚至攻击者可以利用这一点发动DDoS,只要一个连接连上服务器什么也不做,就能吃掉服务器几M的内存,这不同于多进程模型,线程间内存无法共享,因为所有线程处在同一个地址空间中。内存是多线程模型的软肋。
  • 在UNIX平台下多进程模型擅长处理并发长连接,但却不适用于连接频繁产生和关闭的情形。Windows平台忽略此项。 同样的连接需要的内存数量并不比多线程模型少,但是得益于操作系统虚拟内存的Copy on Write机制,fork产生的进程和父进程共享了很大一部分物理内存。但是多进程模型在执行效率上太低,接受一个连接需要几百个时钟周期,产生一个进程 可能消耗几万个CPU时钟周期,两者的开销不成比例。而且由于每个进程的地址空间是独立的,如果需要进行进程间通信的话,只能使用IPC进行进程间通 信,而不能直接对内存进行访问。在CPU能力不足的情况下同样容易遭受DDos,攻击者只需要连上服务器,然后立刻关闭连接,服务端则需要打开一个进程再关闭。
  • 同时需要保持很多的长连接,而且连接的开关很频繁,最高效的模型是非阻塞、异步IO模型。而且不要用select/poll,这两个API的有着O(N)的时间复杂度。在Linux用epoll,BSD用kqueue,Windows用IOCP,或者用libevent封装的统一接口(对于不同平台libevent实现时采用各个平台特有的API),这些平台特有的API时间复杂度为O(1)。 然而在非阻塞,异步I/O模型下的编程是非常痛苦的。由于I/O操作不再阻塞,报文的解析需要小心翼翼,并且需要亲自管理维护每个链接的状态。并且为了充分利用CPU,还应结合线程池,避免在轮询线程中处理业务逻辑。
    但这种模型的效率是极高的。以知名的http服务器nginx为例,可以轻松应付上千万的空连接+少量活动链接,每个连接连接仅需要几K的内核缓冲区,想要应付更多的空连接,只需简单的增加内存(数据来源为淘宝一位工程师的一次技术讲座,并未实测)。这使得DDoS攻击者的成本大大增加,这种模型攻击者只能将服务器的带宽全部占用,才能达到目的,而两方的投入是不成比例的。
时间: 2024-11-05 06:29:17

TCP下IO模型优劣比较的相关文章

进程池与线程池、协程、协程实现TCP服务端并发、IO模型

进程池与线程池.协程.协程实现TCP服务端并发.IO模型 一.进程池与线程池 1.线程池 ''' 开进程开线程都需要消耗资源,只不过两者比较的情况下线程消耗的资源比较少 在计算机能够承受范围内最大限度的利用计算机 什么是池? 在保证计算机硬件安全的情况下最大限度的利用计算机 池其实是降低了程序的运行效率,但是保证了计算机硬件的安全 (硬件的发展跟不上软件的速度) ''' from concurrent.futures import ThreadPoolExecutor import time p

Linux下的五种IO模型

5种IO模型 Linux下五种IO模型 (1)阻塞I/O:什么都不干,导致应用程序阻塞,等待数据准备好,如果数据没有准备好,一直阻塞,等数据准备好了从内核拷贝到用户空间 (2)非阻塞I/O:把一个套接字接口设置为非阻塞,告诉内核,当所请求的IO无法完成时,不要将进程睡眠,而是返回一个错误,这样IO操作函数会不断地测试数据是否准备好,如果没有准备好 ,继续测试,直到准备好为止 (3)I/O复用(select epoll):select或epoll会使进程阻塞,但是和阻塞IO不同的是,这两个函数可以

Linux下5种IO模型的小结

概述 接触网络编程,我们时常会与各种与IO相关的概念打交道:同步(Synchronous).异步(ASynchronous).阻塞(blocking)和非阻塞(non-blocking).关于概念的区别在知乎上看到一位朋友(链接)打了一个比较形象的比喻: 你打电话问书店老板有没有<分布式系统>这本书,如果是同步通信机制,书店老板会说,你稍等,”我查一下",然后开始查啊查,等查好了(可能是5秒,也可能是一天)告诉你结果(返回结果).而异步通信机制,书店老板直接告诉你我查一下啊,查好了打

Linux 环境下 网络IO模型

本文讨论的背景是Linux环境下的network IO. IO发生时涉及的对象和步骤: 对于一个network IO (这里我们以read举例),它会涉及到两个系统对象,一个是调用这个IO的process (or thread),另一个就是系统内核(kernel).当一个read操作发生时,它会等待内核经历两个阶段: 1  内核数据准备 (Waiting for the data to be ready) 2  内核把数据从内核空间,拷贝到用户空间中 (Copying the data from

linux下的io模型

1.用户态和内核态 因为操作系统的资源是有限的,如果访问资源的操作过多,必然会消耗过多的资源,而且如果不对这些操作加以区分,很可能造成资源访问的冲突.所以,为了减少有限资源的访问和使用冲突,Unix/Linux的设计哲学之一就是:对不同的操作赋予不同的执行等级,就是所谓特权的概念.简单说就是有多大能力做多大的事,与系统相关的一些特别关键的操作必须由最高特权的程序来完成.Intel的X86架构的CPU提供了0到3四个特权级,数字越小,特权越高,Linux操作系统中主要采用了0和3两个特权级,分别对

Unix下可用的5种IO模型

一.Unix可用的5种IO模型和区别: 1.阻塞式IO 2.非阻塞式IO 3.IO复用(select和poll) 4.信号驱动式IO(SIGIO) 5.异步IO(POSIX的aio_系列函数) 二.1.阻塞式IO模型: 最流行的IO模型是阻塞式IO模型 应用进程      内核 (recvfrom)------>系统调用--------->  无数据报准备好 | 等待数据 | 数据报准备好 | 将数据从内核复制到用户空间 | 处理数据报<-----返回成功指示<----- 复制完成

Day30:IO模型

一.IO模型 同步(synchronous) IO和异步(asynchronous) IO,阻塞(blocking) IO和非阻塞(non-blocking)IO分别是什么,到底有什么区别?这个问题其实不同的人给出的答案都可能不同,比如wiki,就认为asynchronous IO和non-blocking IO是一个东西.这其实是因为不同的人的知识背景不同,并且在讨论这个问题的时候上下文(context)也不相同.所以,为了更好的回答这个问题,先限定一下本文的上下文.本文讨论的背景是Linux

Linux IO模型与Java NIO

概述看Java NIO一篇文章的时候又看到了"异步非阻塞"这个概念,一直处于似懂非懂的状态,想解释下到底什么是异步 什么是非阻塞,感觉抓不住重点.决定仔细研究一下.本文试图研究以下问题: web server原理,bio的connector与nio的connector在架构上到底什么区别? NIO的优势到底在哪里,是如何应用到实践中的? 同步/异步.阻塞/非阻塞到底是什么概念,引出的IO模型同步阻塞.同步非阻塞.异步阻塞.异步非阻塞的具体使用场景,适用的场景是怎样的? bio nio也

Linux五种IO模型性能分析

socket阻塞与非阻塞,同步与异步 作者:huangguisu 1. 概念理解 在进行网络编程时,我们常常见到同步(Sync)/异步(Async),阻塞(Block)/非阻塞(Unblock)四种调用方式:同步:      所谓同步,就是在发出一个功能调用时,在没有得到结果之前,该调用就不返回.也就是必须一件一件事做,等前一件做完了才能做下一件事. 例如普通B/S模式(同步):提交请求->等待服务器处理->处理完毕返回 这个期间客户端浏览器不能干任何事 异步:      异步的概念和同步相对