(最小生成树) poj 2522

Slim Span

Time Limit: 5000MS   Memory Limit: 65536K
Total Submissions: 6674   Accepted: 3539

Description

Given an undirected weighted graph G, you should find one of spanning trees specified as follows.

The graph G is an ordered pair (VE), where V is a set of vertices {v1v2, …, vn} and E is a set of undirected edges {e1e2, …, em}. Each edge e ∈ E has its weight w(e).

A spanning tree T is a tree (a connected subgraph without cycles) which connects all the n vertices with n − 1 edges. The slimness of a spanning tree T is defined as the difference between the largest weight and the smallest weight among the n − 1 edges of T.


Figure 5: A graph G and the weights of the edges

For example, a graph G in Figure 5(a) has four vertices {v1v2v3v4} and five undirected edges {e1e2e3e4e5}. The weights of the edges are w(e1) = 3, w(e2) = 5, w(e3) = 6,w(e4) = 6, w(e5) = 7 as shown in Figure 5(b).


Figure 6: Examples of the spanning trees of G

There are several spanning trees for G. Four of them are depicted in Figure 6(a)~(d). The spanning tree Ta in Figure 6(a) has three edges whose weights are 3, 6 and 7. The largest weight is 7 and the smallest weight is 3 so that the slimness of the tree Ta is 4. The slimnesses of spanning trees TbTc and Td shown in Figure 6(b), (c) and (d) are 3, 2 and 1, respectively. You can easily see the slimness of any other spanning tree is greater than or equal to 1, thus the spanning tree Td in Figure 6(d) is one of the slimmest spanning trees whose slimness is 1.

Your job is to write a program that computes the smallest slimness.

Input

The input consists of multiple datasets, followed by a line containing two zeros separated by a space. Each dataset has the following format.

n m  
a1 b1 w1
  ?  
am bm wm

Every input item in a dataset is a non-negative integer. Items in a line are separated by a space. n is the number of the vertices and m the number of the edges. You can assume 2 ≤ n ≤ 100 and 0 ≤ m ≤ n(n − 1)/2. ak and bk (k = 1, …, m) are positive integers less than or equal to n, which represent the two vertices vak and vbk connected by the kth edge ek.wk is a positive integer less than or equal to 10000, which indicates the weight of ek. You can assume that the graph G = (VE) is simple, that is, there are no self-loops (that connect the same vertex) nor parallel edges (that are two or more edges whose both ends are the same two vertices).

Output

For each dataset, if the graph has spanning trees, the smallest slimness among them should be printed. Otherwise, −1 should be printed. An output should not contain extra characters.

Sample Input

4 5
1 2 3
1 3 5
1 4 6
2 4 6
3 4 7
4 6
1 2 10
1 3 100
1 4 90
2 3 20
2 4 80
3 4 40
2 1
1 2 1
3 0
3 1
1 2 1
3 3
1 2 2
2 3 5
1 3 6
5 10
1 2 110
1 3 120
1 4 130
1 5 120
2 3 110
2 4 120
2 5 130
3 4 120
3 5 110
4 5 120
5 10
1 2 9384
1 3 887
1 4 2778
1 5 6916
2 3 7794
2 4 8336
2 5 5387
3 4 493
3 5 6650
4 5 1422
5 8
1 2 1
2 3 100
3 4 100
4 5 100
1 5 50
2 5 50
3 5 50
4 1 150
0 0

Sample Output

1
20
0
-1
-1
1
0
1686
50枚举边就ok...!A
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<cstdlib>
#include<algorithm>
#include<string>
using namespace std;
#define INF 0x7fffffff
int n,m,fa[100010],minn,maxx,ans;
struct node
{
      int x,y,w;
}e[100010];
bool cmp(node a,node b)
{
      return a.w<b.w;
}
int find(int x)
{
      if(x!=fa[x])
            fa[x]=find(fa[x]);
      return fa[x];
}
int main()
{
      while(scanf("%d%d",&n,&m)!=EOF)
      {
            if(n==0&&m==0)
                  break;
            int cnt=0,flag=0;
            ans=INF;
            for(int i=1;i<=m;i++)
            {
                  scanf("%d%d%d",&e[i].x,&e[i].y,&e[i].w);
            }
            sort(e+1,e+1+m,cmp);
            for(int i=1;i<=m;i++)
            {
                  cnt=0;
                  for(int i=0;i<=n;i++)
                        fa[i]=i;
                  for(int j=i;j<=m;j++)
                  {
                        int fx,fy;
                        minn=INF,maxx=0;
                        fx=find(e[j].x),fy=find(e[j].y);
                        if(fx!=fy)
                        {
                              fa[fx]=fy;
                              cnt++;
                              if(cnt==n-1&&e[j].w-e[i].w<ans)
                              {
                                    flag=true;
                                    ans=e[j].w-e[i].w;
                              }
                        }
                  }
            }
            if(!flag)
                  printf("-1\n");
            else
            {
                  printf("%d\n",ans);
            }
      }
      return 0;
}

  

				
时间: 2024-11-04 09:48:25

(最小生成树) poj 2522的相关文章

平面点曼哈顿最小生成树——POJ 3241 Object Clustering

对应POJ题目:点击打开链接 Object Clustering Time Limit: 2000MS   Memory Limit: 131072K Total Submissions: 1697   Accepted: 418 Description We have N (N ≤ 10000) objects, and wish to classify them into several groups by judgement of their resemblance. To simply

[kuangbin带你飞]专题六 最小生成树 POJ 2421 Constructing Roads

给一个n个点的完全图 再给你m条道路已经修好 问你还需要修多长的路才能让所有村子互通 将给的m个点的路重新加权值为零的边到边集里 然后求最小生成树 1 #include<cstdio> 2 #include<iostream> 3 #include<algorithm> 4 #include<cmath> 5 #include<cstring> 6 #include<string> 7 #define cl(a,b) memset(a

(最小生成树) poj 1751

Highways Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 9487   Accepted: 2646   Special Judge Description The island nation of Flatopia is perfectly flat. Unfortunately, Flatopia has a very poor system of public highways. The Flatopian

(最小生成树) poj 1789

Truck History Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 19510   Accepted: 7525 Description Advanced Cargo Movement, Ltd. uses trucks of different types. Some trucks are used for vegetable delivery, other for furniture, or for brick

图论 500题——主要为hdu/poj/zoj

转自——http://blog.csdn.net/qwe20060514/article/details/8112550 =============================以下是最小生成树+并查集======================================[HDU]1213   How Many Tables   基础并查集★1272   小希的迷宫   基础并查集★1325&&poj1308  Is It A Tree?   基础并查集★1856   More i

题单二:图论500

http://wenku.baidu.com/link?url=gETLFsWcgddEDRZ334EJOS7qCTab94qw5cor8Es0LINVaGMSgc9nIV-utRIDh--2UwRLvsvJ5tXFjbdpzbjygEdpGehim1i5BfzYgYWxJmu ==========  以下是最小生成树+并查集=========================[HDU]1213         How Many Tables        基础并查集★1272         小

图论五百题!

生死看淡不服就淦,这才是人生! =============================以下是最小生成树+并查集======================================[HDU]1213 How Many Tables 基础并查集★1272 小希的迷宫 基础并查集★1325&&poj1308 Is It A Tree? 基础并查集★1856 More is better 基础并查集★1102 Constructing Roads 基础最小生成树★1232 畅通工程 基

并查集&amp;MST

[HDU] 1198 Farm Irrigation 基础最小生成树★ 1598 find the most comfortable road 枚举+最小生成树★★ 1811 Rank of Tetris 并查集+拓扑排序★★ 3926 Hand in Hand 同构图★ 3938 Portal 离线+并查集★★ 2489     Minimal Ratio Tree dfs枚举组合情况+最小生成树★ 4081     Qin Shi Huang's National Road System 最

图论精炼500题

忘了从哪转的了... =============================以下是最小生成树+并查集====================================== [HDU] 1213               How Many Tables                    基础并查集★ 1272               小希的迷宫                     基础并查集★ 1325&&poj1308    Is It A Tree?