Overfitting & Regularization

Overfitting & Regularization

The Problem of overfitting

A common issue in machine learning or mathematical modeling is overfitting, which occurs when you build a model that not only captures the signal but also the noise in a dataset.

Because we want to create models that generalize and perform well on different data-points, we need to avoid overfitting.

In comes regularization, which is a powerful mathematical tool for reducing overfitting within our model. It does this by adding a penalty for model complexity or extreme parameter values, and it can be applied to different learning models: linear regression, logistic regression, and support vector machines to name a few.

Below is the linear regression cost function with an added regularization component.

The regularization component is really just the sum of squared coefficients of your model (your beta values), multiplied by a parameter, lambda.

Lambda

Lambda can be adjusted to help you find a good fit for your model. However, a value that is too low might not do anything, and one that is too high might actually cause you to underfit the model and lose valuable information. It’s up to the user to find the sweet spot.

Cross validation using different values of lambda can help you to identify the optimal lambda that produces the lowest out of sample error.

Regularization methods (L1 & L2)

The equation shown above is called Ridge Regression (L2) - the beta coefficients are squared and summed. However, another regularization method is Lasso Regreesion (L1), which sums the absolute value of the beta coefficients. Even more, you can combine Ridge and Lasso linearly to get Elastic Net Regression (both squared and absolute value components are included in the cost function).

L2 regularization tends to yield a “dense” solution, where the magnitude of the coefficients are evenly reduced. For example, for a model with 3 parameters, B1, B2, and B3 will reduce by a similar factor.

However, with L1 regularization, the shrinkage of the parameters may be uneven, driving the value of some coefficients to 0. In other words, it will produce a sparse solution. Because of this property, it is often used for feature selection- it can help identify the most predictive features, while zeroing the others.

It also a good idea to appropriately scale your features, so that your coefficients are penalized based on their predictive power and not their scale.

As you can see, regularization can be a powerful tool for reducing overfitting.

In the words of the great thinkers:

An in-depth look into theory and application of regularization.

时间: 2024-10-13 00:17:26

Overfitting & Regularization的相关文章

机器学习入门资源--汇总

机器学习入门资源--汇总 基本概念 机器学习 机器学习是近20多年兴起的一门多领域交叉学科,涉及概率论.统计学.逼近论.凸分析.算法复杂度理论等多门学科.机器学习理论主要是设计和分析一些让计算机可以自动“学习”的算法.机器学习算法是一类从数据中自动分析获得规律,并利用规律对未知数据进行预测的算法.因为学习算法中涉及了大量的统计学理论,机器学习与统计推断学联系尤为密切,也被称为统计学习理论.算法设计方面,机器学习理论关注可以实现的,行之有效的学习算法. 下面从微观到宏观试着梳理一下机器学习的范畴:

林轩田《机器学习基石》 简介

转:https://blog.csdn.net/red_stone1/article/details/80517672 课程介绍 台湾大学林轩田老师曾在coursera上开设了两门机器学习经典课程:<机器学习基石>和<机器学习技法>.<机器学习基石>课程由浅入深.内容全面,基本涵盖了机器学习领域的很多方面.其作为机器学习的入门和进阶资料非常适合.<机器学习技法>课程主要介绍了机器学习领域经典的一些算法,包括支持向量机.决策树.随机森林.神经网络等等.林老师的

Amazon onsite

onsite5轮+Discussion with HR 由于很人很多,我已经忘记了每个interview的国籍啥的,全是男的,一个印度人,一个亲切的中国人,三个白人.大部分都是behavior question 和project experience, 我没有被直接问到任何tech问题但是在project experience里面会穿插很多与tech相关的问题,比如,你用了什么model,why use it?how to evaluate it?the problem of the model

Ng第七课:正则化与过拟合问题 Regularization/The Problem of Overfitting

7.1  过拟合的问题 7.2  代价函数 7.3  正则化线性回归 7.4  正则化的逻辑回归模型 7.1  过拟合的问题 如果我们有非常多的特征,我们通过学习得到的假设预测可能能够非常好地适应训练集(代价函数可能几乎为 0),但是可能会不能推广到新的数据. 下图是一个回归问题的例子: 第一个模型是一个线性模型,欠拟合,不能很好地适应我们的训练集:第三个模型是一 个四次方的模型,过于强调拟合原始数据,而丢失了算法的本质:预测新数据.可以看出,若给出一个新的值使之预测,它将表现的很差,是过拟合,

正则化方法:L1和L2 regularization、数据集扩增、dropout

本文是<Neural networks and deep learning>概览 中第三章的一部分,讲机器学习/深度学习算法中常用的正则化方法.(本文会不断补充) 正则化方法:防止过拟合,提高泛化能力 在训练数据不够多时,或者overtraining时,常常会导致overfitting(过拟合).其直观的表现如下图所示,随着训练过程,网络在training data上的error渐渐减小,但是在验证集上的error却反而渐渐增大--因为训练出来的网络过拟合了训练集,对训练集外的数据却不work

【Hazard of Overfitting】林轩田机器学习基石

首先明确了什么是Overfitting 随后,用开车的例子给出了Overfitting的出现原因 出现原因有三个: (1)dvc太高,模型过于复杂(开车开太快) (2)data中噪声太大(路面太颠簸) (3)数据量N太小(知道的路线太少) 这里(1)是前提,模型太复杂: (1)模型越复杂,就会捕获train data中越多的点(这当中当然包括更多的噪声点) (2)数据量N太小,根据VC Dimension理论,Eout会增大 这里的noise包括两类: 1. stochoastic noise:

正则化方法:L1和L2 regularization、数据集扩增、dropout(转)

ps:转的.当时主要是看到一个问题是L1 L2之间有何区别,当时对l1与l2的概念有些忘了,就百度了一下.看完这篇文章,看到那个对W减小,网络结构变得不那么复杂的解释之后,满脑子的6666-------->把网络权重W看做为对上一层神经元的一个WX+B的线性函数模拟一个曲线就好.知乎大神真的多. 版权声明:本文为博主原创文章,未经博主允许不得转载. 目录(?)[+] 本文是<Neural networks and deep learning>概览 中第三章的一部分,讲机器学习/深度学习算

Stanford机器学习笔记-3.Bayesian statistics and Regularization

3. Bayesian statistics and Regularization Content 3. Bayesian statistics and Regularization. 3.1 Underfitting and overfitting. 3.2 Bayesian statistics and regularization. 3.3 Optimize Cost function by regularization. 3.3.1 Regularized linear regressi

Stanford机器学习---第三讲. 逻辑回归和过拟合问题的解决 logistic Regression &amp; Regularization

原文地址:http://blog.csdn.net/abcjennifer/article/details/7716281 本栏目(Machine learning)包括单参数的线性回归.多参数的线性回归.Octave Tutorial.Logistic Regression.Regularization.神经网络.机器学习系统设计.SVM(Support Vector Machines 支持向量机).聚类.降维.异常检测.大规模机器学习等章节.所有内容均来自Standford公开课machin