*POJ 1222 高斯消元

EXTENDED LIGHTS OUT

Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 9612   Accepted: 6246

Description

In an extended version of the game Lights Out, is a puzzle with 5 rows of 6 buttons each (the actual puzzle has 5 rows of 5 buttons each). Each button has a light. When a button is pressed, that button and each of its (up to four) neighbors above, below, right and left, has the state of its light reversed. (If on, the light is turned off; if off, the light is turned on.) Buttons in the corners change the state of 3 buttons; buttons on an edge change the state of 4 buttons and other buttons change the state of 5. For example, if the buttons marked X on the left below were to be pressed,the display would change to the image on the right.

The aim of the game is, starting from any initial set of lights on
in the display, to press buttons to get the display to a state where all
lights are off. When adjacent buttons are pressed, the action of one
button can undo the effect of another. For instance, in the display
below, pressing buttons marked X in the left display results in the
right display.Note that the buttons in row 2 column 3 and row 2 column 5
both change the state of the button in row 2 column 4,so that, in the
end, its state is unchanged.

Note:

1. It does not matter what order the buttons are pressed.

2. If a button is pressed a second time, it exactly cancels the
effect of the first press, so no button ever need be pressed more than
once.

3. As illustrated in the second diagram, all the lights in the first
row may be turned off, by pressing the corresponding buttons in the
second row. By repeating this process in each row, all the lights in the
first

four rows may be turned out. Similarly, by pressing buttons in
columns 2, 3 ?, all lights in the first 5 columns may be turned off.

Write a program to solve the puzzle.

Input

The
first line of the input is a positive integer n which is the number of
puzzles that follow. Each puzzle will be five lines, each of which has
six 0 or 1 separated by one or more spaces. A 0 indicates that the light
is off, while a 1 indicates that the light is on initially.

Output

For
each puzzle, the output consists of a line with the string: "PUZZLE
#m", where m is the index of the puzzle in the input file. Following
that line, is a puzzle-like display (in the same format as the input) .
In this case, 1‘s indicate buttons that must be pressed to solve the
puzzle, while 0 indicate buttons, which are not pressed. There should be
exactly one space between each 0 or 1 in the output puzzle-like
display.

Sample Input

2
0 1 1 0 1 0
1 0 0 1 1 1
0 0 1 0 0 1
1 0 0 1 0 1
0 1 1 1 0 0
0 0 1 0 1 0
1 0 1 0 1 1
0 0 1 0 1 1
1 0 1 1 0 0
0 1 0 1 0 0

Sample Output

PUZZLE #1
1 0 1 0 0 1
1 1 0 1 0 1
0 0 1 0 1 1
1 0 0 1 0 0
0 1 0 0 0 0
PUZZLE #2
1 0 0 1 1 1
1 1 0 0 0 0
0 0 0 1 0 0
1 1 0 1 0 1
1 0 1 1 0 1

Source

Greater New York 2002

题意:

有5行6列共30个开关,每按动一个开关,该开关及其上下左右共5个开关的状态都会改变,初始给你这30个开关的状态求按动那些开关能够使这些开关的状态都是0.

思路:因为每盏灯,如果操作两次就相当于没有操作,所以相当于(操作次数)%2,即异或操作。

考虑一个2*3的图,最后需要的状态是 :,如果初始状态为:。对这两个矩阵的每个数字做异或操作可以得到线性方程组每个方程的答案。

总共6盏灯,0-5。那么可以列出6个方程。

对于第0盏灯,会影响到它的是第0, 1, 3盏灯,因此可以列出方程1*x0 + 1*x1 + 0*x2 + 1*x3 + 0*x4 + 0*x5= 0。

对于第1盏灯,会影响到它的是第0, 1, 2,4盏灯,因此可以列出方程1*x0 + 1*x1 + 1*x2 + 0*x3 + 1*x4 + 0*x5 = 1。

对于第2盏灯,会影响到它的是第1, 2, 5盏灯,因此可以列出方程0*x0 + 1*x1 + 1*x2 + 0*x3 + 0*x4 + 1*x5 = 0。

.....

所以最后可以列出增广矩阵:

然后用高斯消元求这个矩阵的解就可以了。

30个变量30个方程组

代码:

 1 #include<iostream>
 2 #include<cstdio>
 3 #include<cstring>
 4 #include<cmath>
 5 using namespace std;
 6 const int MAX=40;
 7 int a[MAX][MAX]; //增广矩阵
 8 int x[MAX];  //解集
 9 int equ,var;  //行数和列数
10 void init()
11 {
12     equ=30;var=30;
13     memset(a,0,sizeof(a));
14     for(int i=0;i<5;i++)      //t点和上下左右都改变
15         for(int j=0;j<6;j++)
16         {
17             int t=6*i+j;
18             a[t][t]=1;
19             if(i>0) a[6*(i-1)+j][t]=1;
20             if(i<4) a[6*(i+1)+j][t]=1;
21             if(j>0) a[t-1][t]=1;
22             if(j<5) a[t+1][t]=1;
23         }
24 }
25 void gaos()
26 {
27     int maxr;
28     for(int k=0,col=0;k<equ&&col<var;k++,col++)
29     {
30         maxr=k;                      /****变为行阶梯形矩阵***/
31         for(int i=k+1;i<equ;i++)
32             if(abs(a[i][col])>abs(a[maxr][col]))
33             maxr=i;
34         if(maxr!=k)
35         {
36             for(int i=col;i<var+1;i++)
37                 swap(a[maxr][i],a[k][i]);
38         }
39         if(a[k][col]==0)  //第k行后的第col列全部是0了,换下一列
40         {
41             k--;
42             continue;
43         }
44         for(int i=k+1;i<equ;i++)   //第k行减去第i行的值赋给第i行,变为行阶梯型矩阵,由于都是01型矩阵,不用找lcm直接减就行
45         {
46             if(a[i][col]!=0)
47             {
48                 for(int j=col;j<var+1;j++)
49                     a[i][j]^=a[k][j];
50             }
51         }
52         for(int i=var-1;i>=0;i--)   //算出解集
53         {
54             x[i]=a[i][var];
55             for(int j=i+1;j<var;j++) //该行第var列是1说明该行有且只有一个x取1,若为0说明没有取1的x.
56                 x[i]^=(a[i][j]&x[j]);
57         }
58     }
59 }
60 int main()
61 {
62     int t,ca=0;
63     scanf("%d",&t);
64     while(t--)
65     {
66         ca++;
67         init();
68         for(int i=0;i<30;i++)
69             scanf("%d",&a[i][30]);
70         gaos();
71         printf("PUZZLE #%d",ca);
72         for(int i=0;i<30;i++)
73         {
74             if(i%6==0) printf("\n%d",x[i]);
75             else printf(" %d",x[i]);
76         }
77         printf("\n");
78     }
79     return 0;
80 }
时间: 2024-10-01 21:43:39

*POJ 1222 高斯消元的相关文章

POJ 1222 高斯消元更稳

大致题意: 有5*6个灯,每个灯只有亮和灭两种状态,分别用1和0表示.按下一盏灯的按钮,这盏灯包括它周围的四盏灯都会改变状态,0变成1,1变成0.现在给出5*6的矩阵代表当前状态,求一个能全部使灯灭的解. 分析: 题目已经提示我们,按两次和按零次是一样的效果,所以每个灯的解为0或者1.这样我们可以构造一个30*30的方程组,右边的常数列为灯的初始状态. 影响当前灯的状态的按钮有5个 a[i][j]+x[i][j]+x[i][j-1]+x[i-1][j]+x[i][j+1]+x[i][j+1]=0

POJ SETI 高斯消元 + 费马小定理

http://poj.org/problem?id=2065 题目是要求 如果str[i] = '*'那就是等于0 求这n条方程在%p下的解. 我看了网上的题解说是高斯消元 + 扩展欧几里德. 然后我自己想了想,就用了高斯消元 + 费马小定理.因为%p是质数,所以很容易就用上了费马小定理,就是在除法的时候用一次就好了.还有就是两个模数相乘还要模一次. #include <cstdio> #include <cstdlib> #include <cstring> #inc

poj 1830 高斯消元

终于会一点高斯消元了,认真学还是学的进去啊...... 搞明白解异或方程的原理,然后构造出矩阵就好做了.模板题 1 #include <cstdio> 2 #include <cstring> 3 #include <iostream> 4 #include <stack> 5 #include <queue> 6 #include <map> 7 #include <algorithm> 8 #include <v

POJ 2065-SETI(高斯消元求解同余方程式)

题目地址:POJ 2065 题意:输入一个素数p和一个字符串s(只包含小写字母和'*'),字符串中每个字符对应一个数字,'*'对应0,'a'对应1,'b'对应2.... eg:str[] = "abc", 那么说明 n=3, 字符串所对应的数列为1, 2, 3. 同时题目定义了一个函数:a0*1^0 + a1*1^1+a2*1^2+........+an-1*1^(n-1) = f(1)(mod p), f(1) = str[0] = a = 1; a0*2^0 + a1*2^1+a2

POJ 1222 extended lights out 高斯消元 板子题

题目链接:http://poj.org/problem?id=1222 题目描述:其实就是开关问题, 按下按钮会影响当前和周围的四个按钮, 问关闭所有灯的方案 解题思路:以前用搜索做过, 那时候是刚刚接触ACM的时候, 当时劲头真足啊, 这个解释的很好:http://blog.csdn.net/u013508213/article/details/47263183 代码: #include <iostream> #include <cstdio> #include <cstr

POJ 1222 EXTENDED LIGHTS OUT(高斯消元解XOR方程组)

http://poj.org/problem?id=1222 题意:现在有5*6的开关,1表示亮,0表示灭,按下一个开关后,它上下左右的灯泡会改变亮灭状态,要怎么按使得灯泡全部处于灭状态,输出方案,1表示按,0表示不按. 思路:每个开关最多只按一次,因为按了2次之后,就会抵消了. 可以从结果出发,也就是全灭状态怎么按能变成初始状态. 用3*3来举个例子,$X\left ( i,j \right )$表示这些开关是按还是不按,那么对于第一个开关,对它有影响的就只有2.4这两个开关,所以它的异或方程

POJ 1222 EXTENDED LIGHTS OUT(高斯消元)

[题目链接] http://poj.org/problem?id=1222 [题目大意] 给出一个6*5的矩阵,由0和1构成,要求将其全部变成0,每个格子和周围的四个格子联动,就是说,如果一个格子变了数字,周围四格都会发生变化,变化即做一次与1的异或运算,输出每个格子的操作次数. [题解] 高斯消元练手题,对于每个格子的最终情况列一个方程,一共三十个方程三十个未知数,用高斯消元求解即可. [代码] #include <cstdio> #include <algorithm> #in

POJ 1222【异或高斯消元|二进制状态枚举】

题目链接:[http://poj.org/problem?id=1222] 题意:Light Out,给出一个5 * 6的0,1矩阵,0表示灯熄灭,反之为灯亮.输出一种方案,使得所有的等都被熄灭. 题解:首先可以用高斯消元来做,对于每个点,我们列出一个方程,左边是某个点和它相邻的点,他们的异或值等于右边的值(灯亮为1 ,灯灭为0),然后求一个异或高斯消元就可以了.可以用bitset优化,或者__int128优化(其实unsigned就可以了). 还可以枚举第一行的按开关的状态共有1<<6中状态

POJ 1222 EXTENDED LIGHTS OUT 高斯消元

点击打开链接 EXTENDED LIGHTS OUT Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 6492   Accepted: 4267 Description In an extended version of the game Lights Out, is a puzzle with 5 rows of 6 buttons each (the actual puzzle has 5 rows of 5 butt